login
A275277
a(n) = a(n-1) + 3*a(n-2) + 3*a(n-3) + a(n-4), where a(0) = a(1) = a(2) = a(3) = 1.
1
1, 1, 1, 1, 8, 15, 43, 113, 295, 778, 2045, 5377, 14141, 37185, 97784, 257139, 676187, 1778141, 4675903, 12296026, 32334345, 85028273, 223595289, 587979169, 1546184200, 4065935847, 10692021243, 28116360553, 73936416023, 194427497258, 511277848229
OFFSET
0,5
FORMULA
a(n) = a(n-1) + 3*a(n-2) + 3*a(n-3) + a(n-4), where a(0) = a(1) = a(2) = a(3) = 1.
G.f.: (-1 + 3 x^2 + 6 x^3)/(-1 + x + 3 x^2 + 3 x^3 + x^4).
MATHEMATICA
LinearRecurrence[{1, 3, 3, 1}, {1, 1, 1, 1}, 50]
RecurrenceTable[{a[0]==a[1]==a[2]==a[3]==1, a[n]==a[n-1]+3a[n-2]+ 3a[n-3]+ a[n-4]}, a, {n, 30}] (* Harvey P. Dale, Apr 09 2022 *)
CROSSREFS
Cf. A099234.
Sequence in context: A253767 A254541 A137658 * A341117 A255428 A367876
KEYWORD
nonn,easy
AUTHOR
Clark Kimberling, Aug 11 2016
STATUS
approved