login
A275102
Number of set partitions of [5*n] such that within each block the numbers of elements from all residue classes modulo n are equal for n>0, a(0)=1.
2
1, 52, 1496, 69026, 4383626, 350813126, 33056715626, 3464129078126, 386652630390626, 44687884101953126, 5260857687009765626, 625229219690048828126, 74663901894300244140626, 8937876284201001220703126, 1071238363160070006103515626, 128470217809820900030517578126
OFFSET
0,2
LINKS
J.-M. Sixdeniers, K. A. Penson and A. I. Solomon, Extended Bell and Stirling Numbers From Hypergeometric Exponentiation, J. Integer Seqs. Vol. 4 (2001), #01.1.4.
FORMULA
G.f.: -(685800000*x^7 -675420000*x^6 +136905500*x^5 -8043550*x^4 +17550*x^3 +9249*x^2 -194*x+1) / ((x-1) *(30*x-1) *(5*x-1) *(60*x-1) *(10*x-1) *(120*x-1) *(20*x-1)).
CROSSREFS
Row n=5 of A275043.
Sequence in context: A035798 A017715 A112008 * A004342 A230530 A188389
KEYWORD
nonn,easy
AUTHOR
Alois P. Heinz, Jul 16 2016
STATUS
approved