OFFSET
0,3
COMMENTS
Conjecture: For any prime p > 5 and positive integer n, the number (a(p*n)-a(n))/(p*n)^3 is always a p-adic integer.
The author has proved that for any prime p > 5 and positive integer n the number (a(p*n)-a(n))/(p^3*n^2) is always a p-adic integer.
As a(n) = Sum_{k=0..n} C(n,k)*C(n,2k)*C(2k,k) and C(2k,k) = 2*C(2k-1,k-1) for k = 1,2,3,..., we see that a(n) is always odd. We guess that a(n) is congruent to one of 0, 1, -1 modulo 5.
LINKS
Zhi-Wei Sun, Table of n, a(n) for n = 0..200
Joel A. Henningsen and Armin Straub, Generalized Lucas congruences and linear p-schemes, arXiv:2111.08641 [math.NT], 2021.
Zhi-Wei Sun, Supercongruences involving Lucas sequences, arXiv:1610.03384 [math.NT], 2016.
FORMULA
a(n) = Sum_{k=0..n}C(n,k)*C(n,2k)*C(2k,k).
By the Zeilberger algorithm, we have the recurrence (n+3)^2*(23n+25)*a(n+3) = 25*(n+1)^2*(23n+48)*a(n) + (391n^3+1989n^2+3288n+1750)*a(n+1) + (46n^3+280n^2+ 519n+265)*a(n+2) for all n >= 0.
a(n) = hypergeom([-n, 1/2 - n/2, -n/2], [1, 1], -4). - Peter Luschny, Mar 21 2018
a(n) ~ c * d^n / (Pi*n), where d = 5.729031537980930837932235459792820714... is the real root of the equation -25 - 17*d - 2*d^2 + d^3 = 0 and c = 1.107089291883984657933126801836156175486638498732... is the positive real root of the equation -125 + 1048*c^2 - 2576*c^4 + 1472*c^6 = 0. - Vaclav Kotesovec, Jun 09 2019
EXAMPLE
a(2) = 5 since a(2) = Sum_{k=0,1,2}C(2,k)^2*C(2-k,k) = C(2,0)^2*C(2,0) + C(2,1)^2*C(1,1) = 1 + 4 = 5.
MATHEMATICA
a[n_]:=a[n]=Sum[Binomial[n, k]^2*Binomial[n-k, k], {k, 0, n/2}]
Table[a[n], {n, 0, 27}]
a[n_] := HypergeometricPFQ[{-n, 1/2 - n/2, -n/2}, {1, 1}, -4];
Table[a[n], {n, 0, 27}] (* Peter Luschny, Mar 21 2018 *)
PROG
(PARI) a(n) = sum(k=0, n, binomial(n, k)^2*binomial(n-k, k)); \\ Michel Marcus, Nov 13 2016
CROSSREFS
KEYWORD
nonn
AUTHOR
Zhi-Wei Sun, Nov 12 2016
STATUS
approved