OFFSET
0,3
LINKS
Alois P. Heinz, Table of n, a(n) for n = 0..100
David Einstein, Pseudoinverses on finite sets
FORMULA
a(n) = Sum_{k = 0..n} ((n!)^2/k!) Sum_{j = 0..n-k} 1/(j!(n-k-j)!) Sum_{l = 0..j} k^(n-k-j+l) n^(n-k-l) stirling2(j,l)/(n-k-l)!.
EXAMPLE
The fourteen pairs of functions on [2] are: ([1,1], [1,1]), ([1,1], [1,2]), ([1,1], [2,1]), ([1,1], [2,2]), ([1,2], [1,1]), ([1,2], [1,2]), ([1,2], [2,2]), ([2,1], [1,1]), ([2,1], [2,1]), ([2,1], [2,2]), ([2,2], [1,1]), ([2,2], [1,2]), ([2,2], [2,1]), ([2,2], [2,2]).
CROSSREFS
KEYWORD
nonn
AUTHOR
David Einstein, Nov 12 2016
STATUS
approved