login
A274996
a(n) = F(F(F(n))) mod F(F(n)), where F = Fibonacci = A000045.
4
0, 0, 0, 1, 0, 5, 232, 987, 1, 5, 1, 0, 2211236406303914545699412969744873993387956988652, 2211236406303914545699412969744873993387956988653, 139583862445
OFFSET
1,6
LINKS
FORMULA
a(n) = A058051(n) mod A007570(n).
MAPLE
F:= proc(n) local r, M, p; r, M, p:=
<<1|0>, <0|1>>, <<0|1>, <1|1>>, n;
do if irem(p, 2, 'p')=1 then r:=
`if`(nargs=1, r.M, r.M mod args[2]) fi;
if p=0 then break fi; M:=
`if`(nargs=1, M.M, M.M mod args[2])
od; r[1, 2]
end:
a:= n-> (h-> F(h$2))(F(F(n))):
seq(a(n), n=1..15);
CROSSREFS
KEYWORD
nonn
AUTHOR
Alois P. Heinz, Nov 11 2016
STATUS
approved