login
A274974
Centered octahemioctahedral numbers: a(n) = (4*n^3+24*n^2+8*n+3)/3.
2
1, 13, 49, 117, 225, 381, 593, 869, 1217, 1645, 2161, 2773, 3489, 4317, 5265, 6341, 7553, 8909, 10417, 12085, 13921, 15933, 18129, 20517, 23105, 25901, 28913, 32149, 35617, 39325, 43281, 47493, 51969, 56717, 61745, 67061, 72673, 78589, 84817, 91365, 98241
OFFSET
0,2
COMMENTS
Related to a faceting of the cuboctahedron, sharing the same triangular faces. The octahemioctahedron has the same edge and vertex arrangement as the cuboctahedron (as does A274973). Beginning with the third term, the six square faces are each now "missing" a square pyramid of size 1, 5, 14, 30, 55, 91...(A000330). See A274973 centered cubohemioctahedron for similar cuboctahedral faceting but without the triangular faces.
FORMULA
a(n) = (4*n^3+24*n^2+8*n+3)/3.
G.f.: (-5*x^3+3*x^2+9*x+1)/(x-1)^4.
MATHEMATICA
CoefficientList[Series[(-5 x^3 + 3 x^2 + 9 x + 1)/(x - 1)^4, {x, 0, 40}], x] (* or *)
Table[(4 n^3 + 24 n^2 + 8 n+3)/3, {n, 41}] (* Michael De Vlieger, Jul 13 2016 *)
PROG
(PARI) a(n)=(4*n^3+24*n^2+8*n+3)/3 \\ Charles R Greathouse IV, Nov 03 2017
CROSSREFS
Cf. A005902 (centered cuboctahedral numbers), A274973 (centered cubohemioctahedral numbers).
Sequence in context: A044496 A158480 A009951 * A251142 A319086 A146287
KEYWORD
nonn,easy
AUTHOR
Steven Beard, Jul 13 2016
STATUS
approved