OFFSET
1,1
COMMENTS
An m-gonal number, m >= 3, i.e. of form n = (k/2)*[(m-2)*k - (m-4)], yields a nontrivial factorization of n if and only if of order k >= 3.
Odd composite numbers n for which A176948(n) = n.
All odd composite n are coprime to 30 (see next comment) and have smallest prime factor >= 7, e.g.
77 = 7·11, 119 = 7·17, 143 = 11·13, 161 = 7·23,
187 = 11·17, 203 = 7·29, 209 = 11·19, 221 = 13·17,
299 = 13·23, 319 = 11·29, 323 = 17·19, 329 = 7·47,
371 = 7·53, 377 = 13·29, 391 = 17·23, 407 = 11·37,
413 = 7·59, 437 = 19·23, 473 = 11·43, 493 = 17·29,
497 = 7·71, 517 = 11·47, 527 = 17·31, 533 = 13·41,
539 = 7·7·11, 551 = 19·29, 581 = 7·83, 583 = 11·53,
589 = 19·31, 611 = 13·47, 623 = 7·89, 629 = 17·37,
649 = 11·59, 667 = 23·29, 689 = 13·53, 707 = 7·101,
713 = 23·31, 731 = 17·43, 737 = 11·67, 749 = 7·107,
767 = 13·59, 779 = 19·41, 791 = 7·113, 799 = 17·47,
803 = 11·73, 817 = 19·43, 851 = 23·37, 869 = 11·79,
893 = 19·47, 899 = 29·31, 901 = 17·53, 913 = 11·83.
Composite numbers n which are divisible by 3 are m-gonal numbers of order 3, with m = (n + 3)/3. Thus all a(n) are coprime to 3.
Odd composite numbers n which are divisible by 5 are m-gonal numbers of order 5, with m = (n + 15)/10. Thus all a(n) are coprime to 5.
Since we are looking for solutions of (m-2)*k^2 - (m-4)*k - 2*n = 0, with m >= 3 and k >= 3, the largest k we need to consider is
k = {(m-4) + sqrt[(m-4)^2 + 8*(m-2)*n]}/[2*(m-2)] with m = 3, thus
k <= (1/2)*{-1 + sqrt[1 + 8*n]}.
Or, since we are looking for solutions of 2n = m*k*(k-1) - 2*k*(k-2), with m >= 3 and k >= 3, the largest m we need to consider is
m = [2n + 2*k*(k-2)]/[k*(k-1)] with k = 3, thus m <= (n+3)/3.
LINKS
Chai Wah Wu, Table of n, a(n) for n = 1..10000
OEIS Wiki, Polygonal numbers
EXAMPLE
77 is in this sequence because 77 is trivially a 77-gonal number of order k = 2, but not an m-gonal number for 3 <= k <= (1/2)*{-1 + sqrt[1 + 8*77]}.
MATHEMATICA
Select[Range[500]2+1, ! PrimeQ[#] && FindInstance[n*(4 + n*(s-2)-s)/2 == # && s >= 3 && n >= 3, {s, n}, Integers] == {} &] (* Giovanni Resta, Jul 13 2016 *)
PROG
(Sage)
def is_a(n):
if is_even(n): return False
if is_prime(n): return False
for m in (3..(n+3)//3):
if pari('ispolygonal')(n, m):
return False
return True
print([n for n in (3..913) if is_a(n)]) # Peter Luschny, Jul 28 2016
(Python)
from sympy import isprime
A274967_list = []
for n in range(3, 10**6, 2):
if not isprime(n):
k = 3
while k*(k+1) <= 2*n:
if not (2*(k*(k-2)+n)) % (k*(k - 1)):
break
k += 1
else:
A274967_list.append(n) # Chai Wah Wu, Jul 28 2016
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Daniel Forgues, Jul 12 2016
EXTENSIONS
a(10)-a(52) from Giovanni Resta, Jul 13 2016
STATUS
approved