login
Maximal number of non-attacking queens on a quarter chessboard containing n^2 squares.
5

%I #64 Mar 28 2024 14:19:50

%S 1,1,2,3,4,5,6,7,8,9,10,11,12,13,13,14,15,16,17,18,19,20,21,22,23,24,

%T 25,26,27,28,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,42,43,44,45,

%U 46,47,48,49,50,51,52,53,54,55,56,57,57,58,59,60,61,62

%N Maximal number of non-attacking queens on a quarter chessboard containing n^2 squares.

%C Take the quarter-board formed from a 2n-1 X 2n-1 chessboard by joining the center square to the top two corners. There are n^2 squares. If n = 11, 2n-1 = 21 and the board looks like this, with 11^2 = 121 squares (the top row is the top of the chessboard, the single cell at the bottom is at the center of the board):

%C OOOOOOOOOOOOOOOOOOOOO

%C -OOOOOOOOOOOOOOOOOOO-

%C --OOOOOOOOOOOOOOOOO--

%C ---OOOOOOOOOOOOOOO---

%C ----OOOOOOOOOOOOO----

%C -----OOOOOOOOOOO-----

%C ------OOOOOOOOO------

%C -------OOOOOOO-------

%C --------OOOOO--------

%C ---------OOO---------

%C ----------O----------

%C The main question is, how does a(n) behave when n is large? (See A287866.)

%C This is a bisection of A287864. - _Rob Pratt_, Jun 04 2017

%H Andy Huchala, <a href="/A274933/b274933.txt">Table of n, a(n) for n = 1..106</a>

%H Andy Huchala, <a href="/A274933/a274933_2.py.txt">Python program</a>.

%F Since there can be at most one queen per row, a(n) <= n. In fact, since there cannot be a queen on both rows 1 and 2, a(n) <= n-1 for n>1. - _N. J. A. Sloane_, Jun 04 2017

%e For n=6 the maximal number is 5:

%e OOXOOOOOOOO

%e -OOOOOOXOO-

%e --OXOOOOO--

%e ---OOOXO---

%e ----OOO----

%e -----X-----

%e Examples from _Rob Pratt_, Jul 13 2016:

%e (i) For n=15 the maximal number is 13:

%e OOOOOOXOOOOOOOOOOOOOOOOOOOOOO

%e -OOOOOOOOOOOOOOOOOOXOOOOOOOO-

%e --OOOOOXOOOOOOOOOOOOOOOOOOO--

%e ---OOOOOOOOOOOOOOOXOOOOOOO---

%e ----OOOOOOOOOOOXOOOOOOOOO----

%e -----OOOOOOOXOOOOOOOOOOO-----

%e ------OOOXOOOOOOOOOOOOO------

%e -------OOOOOOOOOXOOOOO-------

%e --------OOXOOOOOOOOOO--------

%e ---------OOOOOOOOXOO---------

%e ----------OOOOXOOOO----------

%e -----------XOOOOOO-----------

%e ------------OXOOO------------

%e -------------OOO-------------

%e --------------O--------------

%e (ii) For n=31 the maximal number is 28:

%e OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOXOOOOOOOOOOOOOOOOO

%e -OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOXOOOOOOOOOOOOOOOOOO-

%e --OOOOOOOOOOOOOOXOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO--

%e ---OOOOOOOOOOOOOOOXOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO---

%e ----OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOXOOOOOOOOOOOOOO----

%e -----OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOXOOOOOOOOOOOOOOO-----

%e ------OOOOOOOOOOOXOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO------

%e -------OOOOOOOOOOOOXOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO-------

%e --------OOOOOOOOOOOOOOOOOOOOXOOOOOOOOOOOOOOOOOOOOOOOO--------

%e ---------OOOOOOOOOOOOOOOOOOOOOOOOOOOOOXOOOOOOOOOOOOO---------

%e ----------OOOOOOOOOOOOOOOOOXOOOOOOOOOOOOOOOOOOOOOOO----------

%e -----------OOOOOOOOOOOOOOOOOOOOOOOOOOXOOOOOOOOOOOO-----------

%e ------------OOOOOOOOOOOOOOOOOOOOOOOOOOOXOOOOOOOOO------------

%e -------------OOOOOOOOOOOOOOOOOOXOOOOOOOOOOOOOOOO-------------

%e --------------OOOOOOOOOOXOOOOOOOOOOOOOOOOOOOOOO--------------

%e ---------------OOOOOXOOOOOOOOOOOOOOOOOOOOOOOOO---------------

%e ----------------OOOOOOOXOOOOOOOOOOOOOOOOOOOOO----------------

%e -----------------OOOOOOOOOOOOOOOOOOOXOOOOOOO-----------------

%e ------------------OOOOXOOOOOOOOOOOOOOOOOOOO------------------

%e -------------------OOOOOOOOOOOOOOOOXOOOOOO-------------------

%e --------------------OXOOOOOOOOOOOOOOOOOOO--------------------

%e ---------------------OOOOOOOOOOOOOXOOOOO---------------------

%e ----------------------OOOOOOOOXOOOOOOOO----------------------

%e -----------------------OOOXOOOOOOOOOOO-----------------------

%e ------------------------OOOOOOOOOXOOO------------------------

%e -------------------------XOOOOOOOOOO-------------------------

%e --------------------------OOOOOOXOO--------------------------

%e ---------------------------OOXOOOO---------------------------

%e ----------------------------OOOOO----------------------------

%e -----------------------------OOO-----------------------------

%e ------------------------------O------------------------------

%Y Cf. A274616, A287864, A287866.

%K nonn,more

%O 1,3

%A _N. J. A. Sloane_, Jul 13 2016

%E Terms a(n) with n >= 15 corrected and extended by _Rob Pratt_, Jul 13 2016

%E a(46)-a(67) from _Andy Huchala_, Mar 27 2024