OFFSET
0,3
COMMENTS
In the square array we have that:
Antidiagonal sums give A168237.
Odd-indexed rows give A010673.
Even-indexed rows give A010684.
Odd-indexed columns give A000035.
Even-indexed columns give A010693.
Odd-indexed antidiagonals give the initial terms of A010674.
Even-indexed antidiagonals give the initial terms of A000034.
Main diagonal gives A010674.
This is also a triangle read by rows in which each new term is the least nonnegative integer distinct from its neighbors.
In the triangle we have that:
Row sums give A168237.
Odd-indexed columns give A000035.
Even-indexed columns give A010693.
Odd-indexed diagonals give A010673.
Even-indexed diagonals give A010684.
Odd-indexed rows give the initial terms of A010674.
Even-indexed rows give the initial terms of A000034.
Odd-indexed antidiagonals give the initial terms of A010673.
Even-indexed antidiagonals give the initial terms of A010684.
FORMULA
a(n) = A274913(n) - 1.
From Robert Israel, Nov 14 2016: (Start)
G.f.: 3*x/(1-x^2) - Sum_{k>=0} (2*x^(2*k^2+3*k+1)-x^(2*k^2+5*k+3))/(1+x).
G.f. as triangle: x*(1+2*y+3*x*y)/((1-x^2*y^2)*(1-x^2)). (End)
EXAMPLE
The corner of the square array begins:
0, 2, 0, 2, 0, 2, 0, 2, 0, 2, ...
1, 3, 1, 3, 1, 3, 1, 3, 1, ...
0, 2, 0, 2, 0, 2, 0, 2, ...
1, 3, 1, 3, 1, 3, 1, ...
0, 2, 0, 2, 0, 2, ...
1, 3, 1, 3, 1, ...
0, 2, 0, 2, ...
1, 3, 1, ...
0, 2, ...
1, ...
...
The sequence written as a triangle begins:
0;
1, 2;
0, 3, 0;
1, 2, 1, 2;
0, 3, 0, 3, 0;
1, 2, 1, 2, 1, 2;
0, 3, 0, 3, 0, 3, 0;
1, 2, 1, 2, 1, 2, 1, 2;
0, 3, 0, 3, 0, 3, 0, 3, 0;
1, 2, 1, 2, 1, 2, 1, 2, 1, 2;
...
MAPLE
ListTools:-Flatten([seq([[0, 3]$i, 0, [1, 2]$(i+1)], i=0..10)]); # Robert Israel, Nov 14 2016
MATHEMATICA
Table[Boole@ EvenQ@ # + 2 Boole@ EvenQ@ k &[n - k + 1], {n, 14}, {k, n}] // Flatten (* Michael De Vlieger, Nov 14 2016 *)
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
Omar E. Pol, Jul 11 2016
STATUS
approved