login
A274883
Triangle read by rows, T(n,k) = 2^k*binomial(n,k)*A057977(n-k) for n>=0 and 0<=k<=n.
0
1, 1, 2, 1, 4, 4, 3, 6, 12, 8, 2, 24, 24, 32, 16, 10, 20, 120, 80, 80, 32, 5, 120, 120, 480, 240, 192, 64, 35, 70, 840, 560, 1680, 672, 448, 128, 14, 560, 560, 4480, 2240, 5376, 1792, 1024, 256, 126, 252, 5040, 3360, 20160, 8064, 16128, 4608, 2304, 512
OFFSET
0,3
EXAMPLE
Triangle starts:
1;
1, 2;
1, 4, 4;
3, 6, 12, 8;
2, 24, 24, 32, 16;
10, 20, 120, 80, 80, 32;
5, 120, 120, 480, 240, 192, 64;
35, 70, 840, 560, 1680, 672, 448, 128;
14, 560, 560, 4480, 2240, 5376, 1792, 1024, 256;
MAPLE
T := (n, k) -> 2^k*binomial(n, k)*((n-k)!/floor((n-k)/2)!^2)/(floor((n-k)/2)+1);
seq(seq(T(n, k), k=0..n), n=0..9);
CROSSREFS
Cf. A000079 (T(n,n)), A057977 (T(n,0)), A077587 (row sum).
Cf. A189912. Row reversed A091894 is a subtriangle.
Sequence in context: A349571 A091335 A362865 * A140946 A008741 A369999
KEYWORD
nonn,tabl
AUTHOR
Peter Luschny, Jul 14 2016
STATUS
approved