login
A274848
Numbers n such that n^2 is expressible in just one way as (p+1)(q+1) where p, q are distinct primes.
4
6, 16, 28, 30, 32, 44, 52, 54, 64, 68, 70, 76, 80, 104, 164, 172, 174, 182, 184, 186, 196, 222, 236, 238, 246, 256, 260, 266, 286, 292, 306, 308, 310, 316, 328, 344, 350, 352, 366, 374, 418, 434, 436, 442, 452, 474, 494, 498, 508, 512, 536, 548, 570, 574, 582, 584, 602, 628, 632, 636, 642, 644, 650, 654, 664, 678
OFFSET
1,1
EXAMPLE
6^2=36=(2+1)*(11+1), 16^2=256=(7+1)(31+1), 28^2=784=(7+1)(97+1).
MAPLE
filter:= proc(n) local F, f, count;
F:= select(`<`, numtheory:-divisors(n^2), n);
count:= 0;
for f in F do
if isprime(f-1) and isprime(n^2/f-1) then
count:=count+1;
if count = 2 then return false fi;
fi
od;
count=1
end proc:
select(filter, [$1..1000]); # Robert Israel, Jul 08 2016
MATHEMATICA
fQ[n_] := Block[{c = 0, p = 2}, While[p < n - 1, If[ PrimeQ[n^2/(p +1) -1], c++]; p = NextPrime@ p]; c == 1]; Select[ Range@1000, fQ] (* Robert G. Wilson v, Jul 09 2016 *)
CROSSREFS
Sequence in context: A191117 A265389 A320693 * A201020 A088818 A346620
KEYWORD
nonn
AUTHOR
Zak Seidov, Jul 08 2016
STATUS
approved