login
A274845
a(0)=1, a(1)=0, a(4n+2) = a(4n+3) = a(4n+5) = (4^(n+1) +(-1)^n)/5, a(4n+4) = (2*4^(n+1) -3*(-1)^n)/5.
1
1, 0, 1, 1, 1, 1, 3, 3, 7, 3, 13, 13, 25, 13, 51, 51, 103, 51, 205, 205, 409, 205, 819, 819, 1639, 819, 3277, 3277, 6553, 3277, 13107, 13107, 26215, 13107, 52429, 52429, 104857, 52429, 209715, 209715, 419431, 209715, 838861, 838861, 1677721, 838861, 3355443
OFFSET
0,7
COMMENTS
Antidiagonals of the array in A274613 written as a triangle:
1,
0, 1/2,
0, 1/2, 1/4,
0, 0, 1/2, 1/8,
0, 0, 1/4, 3/8, 1/16,
... .
a(n) is the numerators of the antidiagonal sums i.e. 1, 0, 1/2, 1/2, 1/4, 1/2, 3/8, 3/8, 7/16, 3/8, 13/32, 13/32, 25/64, 13/32, ... = a(n)/b(n).
The denominators b(n) are A173300(n).
a(0)+a(1) = 1, a(4n+2) +a(4n+3) +a(4n+4) +a(4n+5) = 4, 16, 64, 256, ... .
FORMULA
a(4n) = A102900(n), a(4n+1) = A015521(n), a(4n+2) = a(4n+3) = A015521(n+1).
a(n) = 3*a(n-4) + 4*a(n-8). - G. C. Greubel, Jul 08 2016
G.f.: (1+x^2+x^3-2*x^4+x^5) / ((1-2*x^2)*(1+2*x^2)*(1+x^4)). - Colin Barker, Jul 22 2016
MATHEMATICA
LinearRecurrence[{0, 0, 0, 3, 0, 0, 0, 4}, {1, 0, 1, 1, 1, 1, 3, 3}, 50] (* G. C. Greubel, Jul 08 2016 *)
PROG
(PARI) Vec((1+x^2+x^3-2*x^4+x^5)/((1-2*x^2)*(1+2*x^2)*(1+x^4)) + O(x^60)) \\ Colin Barker, Jul 22 2016
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Paul Curtz, Jul 08 2016
EXTENSIONS
More terms from Colin Barker, Jul 22 2016
STATUS
approved