login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A274805 The logarithmic transform of sigma(n). 4

%I #25 Feb 09 2020 15:43:42

%S 1,2,-3,-6,45,11,-1372,4298,59244,-573463,-2432023,75984243,

%T -136498141,-10881169822,100704750342,1514280063802,-36086469752977,

%U -102642110690866,11883894518252419,-77863424962770751,-3705485804176583500,71306510264347489177

%N The logarithmic transform of sigma(n).

%C The logarithmic transform [LOG] transforms an input sequence b(n) into the output sequence a(n). The LOG transform is the inverse of the exponential transform [EXP], see the Weisstein link and the Sloane and Plouffe reference. This relation goes by the name of Riddell’s formula. For information about the EXP transform see A274804. The logarithmic transform is related to the inverse multinomial transform, see A274844 and the first formula.

%C The definition of the LOG transform, see the second formula, shows that n >= 1. To preserve the identity EXP[LOG[b(n)]] = b(n) for n >= 0 for a sequence b(n) with offset 0 the shifted sequence b(n-1) with offset 1 has to be used as input for the LOG transform, otherwise information about b(0) will be lost in transformation.

%C In the a(n) formulas, see the examples, the cumulant expansion numbers A127671 appear.

%C We observe that the logarithmic transform leaves the value of a(0) undefined.

%C The Maple programs can be used to generate the logarithmic transform of a sequence. The first program uses a formula found by _Alois P. Heinz_, see A001187 and the first formula. The second program uses the definition of the logarithmic transform, see the Weisstein link and the second formula. The third program uses information about the inverse of the logarithmic transform, see A274804.

%D Frank Harary and Edgar M. Palmer, Graphical Enumeration, 1973.

%D Robert James Riddell, Contributions to the theory of condensation, Dissertation, University of Michigan, Ann Arbor, 1951.

%D N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, 1995, pp. 18-23.

%H Alois P. Heinz, <a href="/A274805/b274805.txt">Table of n, a(n) for n = 1..451</a>

%H M. Bernstein and N. J. A. Sloane, <a href="https://arxiv.org/abs/math/0205301">Some Canonical Sequences of Integers</a>, Linear Algebra and its Applications, Vol. 226-228 (1995), pp. 57-72. Erratum 320 (2000), 210. [Link to arXiv version]

%H M. Bernstein and N. J. A. Sloane, <a href="/A003633/a003633_1.pdf">Some canonical sequences of integers</a>, Linear Alg. Applications, 226-228 (1995), 57-72; erratum 320 (2000), 210. [Link to Lin. Alg. Applic. version together with omitted figures]

%H N. J. A. Sloane, <a href="/transforms.txt">Transforms</a>.

%H Eric W. Weisstein MathWorld, <a href="http://mathworld.wolfram.com/LogarithmicTransform.html">Logarithmic Transform</a>.

%F a(n) = b(n) - Sum_{k = 1..n-1}((k*binomial(n, k)*b(n-k)*a(k))/n), n >= 1, with b(n) = A000203(n) = sigma(n).

%F E.g.f. log(1+ Sum_{n >= 1}(b(n)*x^n/n!)), n >= 1, with b(n) = A000203(n) = sigma(n).

%e Some a(n) formulas, see A127671:

%e a(0) = undefined

%e a(1) = 1*x(1)

%e a(2) = 1*x(2) - x(1)^2

%e a(3) = 1*x(3) - 3*x(1)*x(2) + 2*x(1)^3

%e a(4) = 1*x(4) - 4*x(1)*x(3) - 3*x(2)^2 + 12*x(1)^2*x(2) - 6*x(1)^4

%e a(5) = 1*x(5) - 5*x(1)*x(4) - 10*x(2)*x(3) + 20*x(1)^2*x(3) + 30*x(1)*x(2)^2 - 60*x(1)^3*x(2) + 24*x(1)^5

%p nmax:=22: with(numtheory): b := proc(n): sigma(n) end: a:= proc(n) option remember; b(n) - add(k*binomial(n, k)*b(n-k)*a(k), k=1..n-1)/n: end: seq(a(n), n=1..nmax); # End first LOG program.

%p nmax:=22: with(numtheory): b := proc(n): sigma(n) end: t1 := log(1 + add(b(n)*x^n/n!, n=1..nmax+1)): t2 := series(t1, x, nmax+1): a := proc(n): n!*coeff(t2, x, n) end: seq(a(n), n=1..nmax); # End second LOG program.

%p nmax:=22: with(numtheory): b := proc(n): sigma(n) end: f := series(exp(add(r(n)*x^n/n!, n=1..nmax+1)), x, nmax+1): d := proc(n): n!*coeff(f, x, n) end: a(1):=b(1): r(1):= b(1): for n from 2 to nmax+1 do r(n) := solve(d(n)-b(n), r(n)): a(n):=r(n): od: seq(a(n), n=1..nmax); # End third LOG program.

%t a[1] = 1; a[n_] := a[n] = DivisorSigma[1, n] - Sum[k*Binomial[n, k] * DivisorSigma[1, n-k]*a[k], {k, 1, n-1}]/n; Table[a[n], {n, 1, 22}] (* _Jean-François Alcover_, Feb 27 2017 *)

%o (PARI) N=33; x='x+O('x^N); Vec(serlaplace(log(1+sum(n=1,N,sigma(n)*x^n/n!)))) \\ _Joerg Arndt_, Feb 27 2017

%Y Some LOG transform pairs are, n >= 1: A006125(n-1) and A033678(n); A006125(n) and A001187(n); A006125(n+1) and A062740(n); A000045(n) and A112005(n); A000045(n+1) and A007553(n); A000040(n) and A007447(n); A000051(n) and (-1)*A263968(n-1); A002416(n) and A062738(n); A000290(n) and A033464(n-1); A029725(n-1) and A116652(n-1); A052332(n) and A002031(n+1); A027641(n)/A027642(n) and (-1)*A060054(n+1)/(A075180(n-1).

%Y Cf. A274804, A274844, A127671, A000203.

%Y Cf. A112005, A007553, A062740, A007447, A062738, A033464, A116652, A002031, A003704, A003707, A155585, A000142, A226968.

%K sign

%O 1,2

%A _Johannes W. Meijer_, Jul 27 2016

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified April 19 21:09 EDT 2024. Contains 371798 sequences. (Running on oeis4.)