login
A274794
Numbers n such that n^3 is the sum of two triangular numbers in exactly one way.
0
0, 1, 3, 4, 7, 9, 10, 19, 24, 25, 34, 37, 39, 42, 49, 54, 55, 72, 73, 78, 85, 87, 93, 94, 102, 108, 109, 118, 138, 142, 147, 157, 160, 165, 168, 175, 192, 195, 202, 210, 214, 220, 228, 232, 243, 247, 249, 250, 252, 253, 258, 267, 273, 274, 279, 289, 297, 312, 333
OFFSET
1,3
COMMENTS
A115104 is a subsequence. Terms such that 4*n^3 + 1 is not prime are 24, 337, 457, 750, 840, 1015, ...
EXAMPLE
3 is a term because 3^3 = 27 = 6 + 21.
MATHEMATICA
Select[Range@ 333, Length[PowersRepresentations[4 #^3 + 1, 2, 2]] == 1 &] (* after Ant King at A052343, or *)
nn = 20; t = (#^2 + #)/2 & /@ Range[0, nn^3]; Select[Range[0, nn], Function[n, Count[Transpose@ {#, n^3 - #} &@ Range[0, Floor[n^3/2]], k_ /; Times @@ Boole@ Map[MemberQ[t, #] &, k] == 1] == 1]] (* Michael De Vlieger, Jul 07 2016 *)
PROG
(PARI) a052343(n) = sum(i=0, (sqrtint(4*n + 1) - 1)\2, issquare(n - i - i^2));
lista(nn) = for(n=0, nn, if(a052343(n^3) == 1, print1(n, ", ")));
CROSSREFS
KEYWORD
nonn
AUTHOR
Altug Alkan, Jul 07 2016
STATUS
approved