This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A274707 a(n) = A(n) if n is even else a(n) = A(n)*(n-1)/(n+1) with A(n) = ((n-1)!/ floor((n-1)/2)!^2). 0
 0, 1, 1, 6, 4, 30, 15, 140, 56, 630, 210, 2772, 792, 12012, 3003, 51480, 11440, 218790, 43758, 923780, 167960, 3879876, 646646, 16224936, 2496144, 67603900, 9657700, 280816200, 37442160, 1163381400, 145422675, 4808643120, 565722720, 19835652870, 2203961430 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,4 LINKS FORMULA a(2*n+1) = A001791(n) for n>=0. a(2*n+2) = A002457(n) for n>=0. (-1)^(n+1)*a(2*n+1) = A158500(n+1) for n>=1. G.f.: (2*x^3 + (4*x^2-1)*(2*x^2 -1 + sqrt(1-4*x^2)))/(2*x*(1-4*x^2)^(3/2)). - Benedict W. J. Irwin, Aug 15 2016 Conjecture: -(n-2)*(n+1)*(n^3-3*n^2-2*n+12)*a(n) -4*n*(n-1)*(2*n-7)*a(n-1) +4*(n-1)*(n-2)*(n^3-5*n+8)*a(n-2)=0. - R. J. Mathar, Oct 07 2016 MAPLE a := proc(n) ((n-1)!/iquo(n-1, 2)!^2); if n::even then % else % * (n-1)/(n+1) fi end: seq(a(n), n=1..35); MATHEMATICA CoefficientList[Series[(2 x^3 + (-1 + 4 x^2) (-1 + 2 x^2 + Sqrt[1 - 4 x^2]))/(2 x (1 - 4 x^2)^(3/2)), {x, 0, 20}], x] (* Benedict W. J. Irwin, Aug 15 2016 *) Table[If[EvenQ@ n, #, # (n - 1)/(n + 1)] &@((n - 1)!/Floor[(n - 1)/2]!^2), {n, 35}] (* Michael De Vlieger, Aug 15 2016 *) CROSSREFS Cf. A001791, A002457, A158500. Sequence in context: A121682 A237425 A191567 * A163934 A163939 A038258 Adjacent sequences:  A274704 A274705 A274706 * A274708 A274709 A274710 KEYWORD nonn AUTHOR Peter Luschny, Jul 08 2016 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified July 22 05:47 EDT 2019. Contains 325213 sequences. (Running on oeis4.)