This site is supported by donations to The OEIS Foundation.

 Please make a donation to keep the OEIS running. We are now in our 55th year. In the past year we added 12000 new sequences and reached 8000 citations (which often say "discovered thanks to the OEIS"). We need to raise money to hire someone to manage submissions, which would reduce the load on our editors and speed up editing. Other ways to donate

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A274674 Diagonal of the rational function 1/(1 - x - x y - x z - y z + x y z). 1
 1, 1, 7, 37, 211, 1351, 8611, 57037, 383587, 2615851, 18052057, 125693107, 882033439, 6229779739, 44246291467, 315774707437, 2263120500067, 16279948902259, 117498622706269, 850541100418807, 6173221388110861, 44912998208539561, 327476893004792197, 2392516335780421627 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 COMMENTS Annihilating differential operator: x*(6*x^2-4*x-5)*(2*x^4-64*x^3-27*x^2-3*x+1)*Dx^2 + (36*x^6-800*x^5+556*x^4+1496*x^3+411*x^2+30*x-5)*Dx + 12*x^5-100*x^4+256*x^3+540*x^2+105*x+5. LINKS Gheorghe Coserea, Table of n, a(n) for n = 0..310 A. Bostan, S. Boukraa, J.-M. Maillard, J.-A. Weil, Diagonals of rational functions and selected differential Galois groups, arXiv preprint arXiv:1507.03227 [math-ph], 2015. FORMULA G.f.: hypergeom([1/12, 5/12],[1],1728*x^5*(1-3*x-27*x^2-64*x^3+2*x^4)/(1-4*x-18*x^2-28*x^3+x^4)^3)/(1-4*x-18*x^2-28*x^3+x^4)^(1/4). 0 = x*(6*x^2-4*x-5)*(2*x^4-64*x^3-27*x^2-3*x+1)*y'' + (36*x^6-800*x^5+556*x^4+1496*x^3+411*x^2+30*x-5)*y' + (12*x^5-100*x^4+256*x^3+540*x^2+105*x+5)*y, where y is the g.f. Recurrence: n^2*(517*n^2 - 2249*n + 2322)*a(n) = (1551*n^4 - 8298*n^3 + 13910*n^2 - 8103*n + 1530)*a(n-1) + (13959*n^4 - 88641*n^3 + 196637*n^2 - 178937*n + 54690)*a(n-2) + 2*(16544*n^4 - 121600*n^3 + 316309*n^2 - 336617*n + 117690)*a(n-3) - 2*(n-3)^2*(517*n^2 - 1215*n + 590)*a(n-4). - Vaclav Kotesovec, Jul 07 2016 MATHEMATICA gf = Hypergeometric2F1[1/12, 5/12, 1, 1728*x^5*(1 - 3*x - 27*x^2 - 64*x^3 + 2*x^4)/(1 - 4*x - 18*x^2 - 28*x^3 + x^4)^3]/(1 - 4*x - 18*x^2 - 28*x^3 + x^4)^(1/4); CoefficientList[gf + O[x]^20, x] (* Jean-François Alcover, Dec 01 2017 *) PROG (PARI) my(x='x, y='y, z='z); R = 1/(1 - x - x*y - x*z - y*z + x*y*z); diag(n, expr, var) = {   my(a = vector(n));   for (i = 1, #var, expr = taylor(expr, var[#var - i + 1], n));   for (k = 1, n, a[k] = expr;        for (i = 1, #var, a[k] = polcoeff(a[k], k-1)));   return(a); }; diag(10, R, [x, y, z]) (PARI) \\ system("wget http://www.jjj.de/pari/hypergeom.gpi"); read("hypergeom.gpi"); N = 24; x = 'x + O('x^N); Vec(hypergeom([1/12, 5/12], [1], 1728*x^5*(1-3*x-27*x^2-64*x^3+2*x^4)/(1-4*x-18*x^2-28*x^3+x^4)^3, N)/(1-4*x-18*x^2-28*x^3+x^4)^(1/4)) CROSSREFS Cf. A268545-A268555. Sequence in context: A002683 A319013 A126475 * A255672 A077239 A046235 Adjacent sequences:  A274671 A274672 A274673 * A274675 A274676 A274677 KEYWORD nonn AUTHOR Gheorghe Coserea, Jul 06 2016 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 13 03:41 EST 2019. Contains 329968 sequences. (Running on oeis4.)