login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A274581 Number T(n,k) of set partitions of [n] with alternating parity of elements and exactly k blocks; triangle T(n,k), n>=0, 0<=k<=n, read by rows. 13
1, 0, 1, 0, 1, 1, 0, 1, 2, 1, 0, 1, 3, 3, 1, 0, 1, 5, 7, 4, 1, 0, 1, 7, 14, 12, 5, 1, 0, 1, 11, 30, 33, 19, 6, 1, 0, 1, 15, 57, 84, 62, 27, 7, 1, 0, 1, 23, 119, 222, 204, 108, 37, 8, 1, 0, 1, 31, 224, 545, 627, 409, 169, 48, 9, 1, 0, 1, 47, 460, 1425, 2006, 1558, 763, 254, 61, 10, 1 (list; table; graph; refs; listen; history; text; internal format)
OFFSET

0,9

LINKS

Alois P. Heinz, Rows n = 0..35, flattened

Wikipedia, Partition of a set

FORMULA

Sum_{k=0..n} k * T(n,k) = A305823(n).

EXAMPLE

T(5,1) = 1: 12345.

T(5,2) = 5: 1234|5, 123|45, 12|345, 145|23, 1|2345.

T(5,3) = 7: 123|4|5, 12|34|5, 12|3|45, 1|234|5, 145|2|3, 1|2|345, 1|23|45.

T(5,4) = 4: 12|3|4|5, 1|23|4|5, 1|2|34|5, 1|2|3|45.

T(5,5) = 1: 1|2|3|4|5.

Triangle T(n,k) begins:

  1;

  0, 1;

  0, 1,  1;

  0, 1,  2,   1;

  0, 1,  3,   3,   1;

  0, 1,  5,   7,   4,   1;

  0, 1,  7,  14,  12,   5,   1;

  0, 1, 11,  30,  33,  19,   6,   1;

  0, 1, 15,  57,  84,  62,  27,   7,  1;

  0, 1, 23, 119, 222, 204, 108,  37,  8, 1;

  0, 1, 31, 224, 545, 627, 409, 169, 48, 9, 1;

MAPLE

b:= proc(l, i, t) option remember; `if`(l=[], x,

     `if`(l[1]=t, 0, expand(x*b(subsop(1=[][], l), 1, 1-t)

       ))+add(`if`(l[j]=t, 0, b(subsop(j=[][], l), j, 1-t)

       ), j=i..nops(l)))

    end:

T:= n-> `if`(n=0, 1, (p-> seq(coeff(p, x, j), j=0..n))(

         b([seq(irem(i, 2), i=2..n)], 1$2))):

seq(T(n), n=0..12);

MATHEMATICA

b[l_, i_, t_] := b[l, i, t] = If[l == {}, x, If[l[[1]] == t, 0, Expand[x*b[Rest[l], 1, 1 - t]]] + Sum[If[l[[j]] == t, 0, b[Delete[l, j], j, 1 - t]], {j, i, Length[l]}]];

T[n_] := If[n==0, {1}, Function[p, Table[Coefficient[p, x, j], {j, 0, n}]][ b[Table[Mod[i, 2], {i, 2, n}], 1, 1]]];

Flatten[Table[T[n], {n, 0, 12}]] (* Jean-Fran├žois Alcover, May 27 2018, from Maple *)

CROSSREFS

Columns k=0-10 give: A000007, A057427, A052955(n-2) for n>1, A305777, A305778, A305779, A305780, A305781, A305782, A305783, A305784.

Diagonals include A000012, A001477, A077043.

Row sums give A274547.

T(n,ceiling(n/2)) gives A305785.

Cf. A124419, A274310 (parities alternate within blocks), A305823.

Sequence in context: A277504 A167763 A277666 * A321919 A321918 A321754

Adjacent sequences:  A274578 A274579 A274580 * A274582 A274583 A274584

KEYWORD

nonn,tabl

AUTHOR

Alois P. Heinz, Jun 29 2016

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified February 26 13:59 EST 2021. Contains 341632 sequences. (Running on oeis4.)