login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo

Please make a donation to keep the OEIS running. We are now in our 56th year. In the past year we added 10000 new sequences and reached almost 9000 citations (which often say "discovered thanks to the OEIS").
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A274545 Values of k such that 5*k-1 and 10*k-1 are both perfect squares. 2
1, 29, 33293, 1130977, 1305146305, 44336554445, 51164345409437, 1738081606216033, 2005744667435597089, 68136275082544365341, 78629202401645931667661, 2671078254047822603875969, 3082421990543579145800043553, 104711609647046466634601365517 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,2

COMMENTS

Intersection of A062317 and A220082.

LINKS

Colin Barker, Table of n, a(n) for n = 1..400

Index entries for linear recurrences with constant coefficients, signature (1,39202,-39202,-1,1).

FORMULA

a(n) = a(n-1) + 39202*a(n-2) - 39202*a(n-3) - a(n-4) + a(n-5) for n>5.

G.f.: x*(1 + 28*x - 5938*x^2 + 28*x^3 + x^4)/((1 - x)*(1 - 198*x + x^2)*(1 + 198*x + x^2)).

EXAMPLE

29 is in the sequence because 5*29-1 = 144 = 12^2, and 10*29-1 = 289 = 17^2.

MATHEMATICA

Rest@ CoefficientList[Series[x (1 + 28 x- 5938 x^2 + 28 x^3 + x^4) / ((1 - x) (1 - 198 x + x^2) (1 + 198 x + x^2)), {x, 0, 17}], x] (* Michael De Vlieger, Jun 27 2016 *)

PROG

(PARI) Vec(x*(1+x)*(1-6*x+x^2)/((1-x)*(1-34*x+x^2)*(1+x+x^2)) + O(x^20))

(PARI) isok(n) = issquare(5*n-1) && issquare(10*n-1); \\ Michel Marcus, Jun 28 2016

CROSSREFS

Cf. A062317, A220082, A274544.

Sequence in context: A127425 A135253 A262715 * A296176 A159437 A185822

Adjacent sequences:  A274542 A274543 A274544 * A274546 A274547 A274548

KEYWORD

nonn,easy

AUTHOR

Colin Barker, Jun 27 2016

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified November 26 09:38 EST 2020. Contains 338639 sequences. (Running on oeis4.)