login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A274542 Decimal expansion of exp(sqrt(2)/3). 3
1, 6, 0, 2, 2, 4, 2, 9, 9, 7, 2, 0, 3, 5, 6, 0, 1, 5, 0, 9, 9, 5, 1, 7, 7, 7, 7, 2, 2, 2, 8, 6, 7, 8, 7, 5, 8, 5, 1, 2, 9, 6, 1, 6, 8, 2, 9, 5, 4, 5, 4, 7, 1, 8, 7, 4, 2, 6, 8, 2, 2, 4, 0, 5, 3, 0, 9, 1, 0, 0, 1, 6, 9, 9, 4, 9, 0, 4, 1, 9, 1, 9, 5, 8, 2 (list; constant; graph; refs; listen; history; text; internal format)
OFFSET

1,2

COMMENTS

Define P(n) = (1/n)*(sum(x(n-k)*P(k), k=0..n-1)), n >= 1 and P(0) =1 with x(3) = (1 + sqrt(2)) and x(n) = 1 for all other n. We find that C2 = limit(P(n), n -> infinity) = exp(sqrt(2)/3).

The structure of the n!*P(n) formulas leads to the multinomial coefficients A036039.

LINKS

G. C. Greubel, Table of n, a(n) for n = 1..10000

The Dev Team and Simon Plouffe, The Inverse Symbolic Calculator (ISC).

FORMULA

c = exp(sqrt(2)/3)

c = limit(P(n), n -> infinity) with P(n) = (1/n)*(sum(x(n-k)*P(k), k=0..n-1)) for n >= 1, and P(0) =1, with x(3) = (1 + sqrt(2)), the silver mean A014176, and x(n) = 1 for all other n.

EXAMPLE

c = 1.6022429972035601509951777722286787585129616829545471874……

MAPLE

Digits := 85: evalf(exp(sqrt(2)/3)); # End program 1.

P := proc(n) : if n=0 then 1 else P(n) := expand((1/n)*(add(x(n-k)*P(k), k=0..n-1))) fi; end: x := proc(n): if n=3 then (sqrt(2)+1) else 1 fi: end: Digits := 56; evalf(P(120)); # End program 2.

MATHEMATICA

First@ RealDigits@ N[Exp[Sqrt[2]/3], 85] (* Michael De Vlieger, Jun 27 2016 *)

PROG

(PARI) my(x=exp(sqrt(2)/3)); for(k=1, 100, my(d=floor(x)); x=(x-d)*10; print1(d, ", ")) \\ Felix Fröhlich, Jun 27 2016

(MAGMA) SetDefaultRealField(RealField(100)); Exp[Sqrt[2]/3]; // G. C. Greubel, Aug 19 2018

CROSSREFS

Cf. A274540, A274541, A014176, A131594, A036039.

Sequence in context: A087778 A129106 A070062 * A327837 A261166 A021170

Adjacent sequences:  A274539 A274540 A274541 * A274543 A274544 A274545

KEYWORD

cons,nonn

AUTHOR

Johannes W. Meijer, Jun 27 2016

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified July 5 04:19 EDT 2020. Contains 335459 sequences. (Running on oeis4.)