This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A274539 E.g.f.: exp(sum(bell(n)*z^n/n, n=1..infinity). 1
 1, 1, 3, 17, 155, 2079, 38629, 951187, 29979753, 1175837345, 56066617331, 3187704802281, 212628685506643, 16413606252207007, 1449425836362499605, 144977415195565990619, 16285937949513614300369, 2039447464767566886933057, 282862729890000953318773603 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 COMMENTS The structure of the n!*P(n) formulas leads to the multinomial coefficients A036039. Some transform pairs, see the formula section, are: x(n) = A000027(n) and a(n) = A000262(n); x(n) = A000045(n) and a(n) = A244430(n); x(n) = A000079(n) and a(n) = A000165(n); x(n) = A000108(n) and a(n) = A213507(n); x(n) = A000142(n) and a(n) = A158876(n); x(n) = A000203(n) and a(n) = A053529(n). LINKS FORMULA a(n) = n! * P(n), with P(n) = (1/n)*(sum(x(n-k) * P(k), k=0..n-1)), n >=1 and P(0) = 1, with x(n) = A000110(n), the Bell numbers. E.g.f.: exp(sum(x(n)*z^n/n, n=1..infinity) with x(n) = A000110(n). MAPLE a := proc(n): n!*P(n) end: P := proc(n): if n=0 then 1 else P(n):= expand((1/n)*(add(x(n-k) * P(k), k=0..n-1))) fi; end: with(combinat): x := proc(n): bell(n) end: seq(a(n), n=0..18); MATHEMATICA nmax = 20; CoefficientList[Series[E^(Sum[BellB[n]*z^n/n, {n, 1, nmax}]), {z, 0, nmax}], z] * Range[0, nmax]! (* Vaclav Kotesovec, Jun 29 2016 *) CROSSREFS Cf. A036039, A000110, A000165, A000262, A053529, A158876, A213507, A244430. Sequence in context: A168441 A001469 A110501 * A066211 A163884 A221410 Adjacent sequences:  A274536 A274537 A274538 * A274540 A274541 A274542 KEYWORD nonn AUTHOR Johannes W. Meijer, Jun 29 2016 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified October 22 14:41 EDT 2018. Contains 316486 sequences. (Running on oeis4.)