OFFSET
1,3
COMMENTS
Let a(n) be the number of odd partitions in the multiset intersections of the set of partitions of n with itself.
Form the p(n) X p(n) matrix M of partitions of numbers ranging from 1 to n by taking the multiset intersections of all the pairs of partitions of n. Then, ignoring the empty set, the number of odd partitions in M equals the number of distinct partitions in M. (Proved in Wilf et al., "A pentagonal number sieve".)
LINKS
George Beck, Mathematica notebook
Sylvie Corteel, Carla D. Savage, Herbert S. Wilf, and Doron Zeilberger, A pentagonal number sieve, J. Combin. Theory Ser. A 82 (1998), no. 2, 186-192.
Eric Weisstein's World of Mathematics, Pentagonal Number Theorem
Wikipedia, Pentagonal number theorem
EXAMPLE
For n=3, the partitions are 3, 21, 111. The multiset intersections are M = {{3, x, x}, {x, 21, 1}, {x, 1, 111}} (where x is the empty set), which fall into classes {{OD, y, y}, {y, D, OD}, {y, OD, O}}, where O means odd, D means distinct, OD means both, and y means neither. Thus a(3) = 4, the number of Os, which equals the number of Ds.
CROSSREFS
KEYWORD
nonn
AUTHOR
George Beck, Jun 26 2016
STATUS
approved