login
A274505
Primes p such that 3*p-10 and 3*p+10 are prime numbers.
1
7, 11, 17, 19, 23, 31, 47, 61, 67, 89, 101, 107, 109, 137, 151, 163, 199, 283, 347, 353, 373, 397, 401, 409, 431, 439, 457, 479, 487, 523, 577, 607, 619, 641, 647, 661, 691, 761, 787, 809, 907, 929, 1033, 1087, 1103, 1153, 1201, 1229, 1307, 1319
OFFSET
1,1
COMMENTS
Intersection of A023211 and A230227.
LINKS
EXAMPLE
7 is a term because 3*7-10 = 11 and 3*7+10 = 31 are primes.
MATHEMATICA
Select[Prime[Range[400]], PrimeQ[3 # - 10] && PrimeQ[3 # + 10] &]
PROG
(Magma) [p: p in PrimesUpTo(1500) |IsPrime(3*p-10) and IsPrime(3*p+10)];
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Vincenzo Librandi, Jun 30 2016
STATUS
approved