login
A274432
Products of distinct tribonacci numbers (A000213).
6
3, 5, 9, 15, 17, 27, 31, 45, 51, 57, 85, 93, 105, 135, 153, 155, 171, 193, 255, 279, 285, 315, 355, 459, 465, 513, 525, 527, 579, 653, 765, 837, 855, 945, 965, 969, 1065, 1201, 1395, 1539, 1575, 1581, 1737, 1767, 1775, 1785, 1959, 2209, 2295, 2565, 2635
OFFSET
1,1
LINKS
EXAMPLE
The tribonacci numbers are 1,1,1,3,5,9,17,31,..., so that the sequence of all products of distinct members, in increasing order, is (3, 5, 9, 15, 17, 27, 31, 45,...).
MATHEMATICA
r[1] := 1; r[2] := 1; r[3] = 1; r[n_] := r[n] = r[n - 1] + r[n - 2] + r[n - 3];
s = {1}; z = 60; f = Map[r, Range[z]]; Take[f, 20]
Do[s = Union[s, Select[s*f[[i]], # <= f[[z]] &]], {i, z}];
Take[s, 2 z] (*A274432*)
infQ[n_] := MemberQ[f, n];
ans = Table[#[[Flatten[Position[Map[Apply[Times, #] &, #], s[[n]]]][[1]]]] &[
Rest[Subsets[Map[#[[1]] &, Select[Map[{#, infQ[#]} &, Divisors[s[[n]]]], #[[2]] && #[[1]] > 1 &]]]]], {n, 2, 300}];
Map[Apply[Times, #] &, Select[ans, Length[#] == 2 &]] (* A274433 *)
Map[Apply[Times, #] &, Select[ans, Length[#] == 3 &]] (* A274434 *)
(* Peter J. C. Moses, Jun 17 2016 *)
CROSSREFS
Cf. A160009, A274280, A274433 (binary products), A274434 (trinary products).
Sequence in context: A111249 A190804 A100812 * A190939 A018634 A310041
KEYWORD
nonn,easy
AUTHOR
Clark Kimberling, Jun 22 2016
STATUS
approved