login
A274424
Numbers k such that there exists an m for which k = Sum_{j=1..m} (k mod prime(j)).
3
13, 19, 48, 63, 67, 76, 94, 99, 123, 141, 143, 150, 179, 193, 247, 249, 285, 339, 404, 445, 517, 693, 711, 798, 969, 982, 1054, 1138, 1233, 1245, 1257, 1262, 1364, 1524, 1531, 1569, 1613, 1694, 1701, 1743, 1745, 1928, 2018, 2070, 2114, 2224, 2339, 2461, 2770
OFFSET
1,1
EXAMPLE
48 mod 2 + 48 mod 3 + 48 mod 5 + 48 mod 7 + 48 mod 11 + 48 mod 13 + 48 mod 17 + 48 mod 19 + 48 mod 23 = 0 + 0 + 3 + 6 + 4 + 9 + 14 + 10 + 2 = 48, so 48 is a term.
MAPLE
P:=proc(q) local a, b, k, n; for n from 2 to q do a:=0; b:=2;
while n>a do a:=a+(n mod b); b:=nextprime(b); od;
if n=a then print(n); fi; od; end: P(10^9);
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Paolo P. Lava, Jun 21 2016
STATUS
approved