login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A274382 a(n) = GCD(n, n*(n+1)/2-sigma(n)). 2
1, 2, 1, 1, 1, 3, 1, 1, 1, 1, 1, 2, 1, 1, 3, 1, 1, 6, 1, 4, 1, 1, 1, 24, 1, 1, 1, 14, 1, 3, 1, 1, 3, 1, 1, 1, 1, 1, 1, 10, 1, 3, 1, 2, 3, 1, 1, 4, 1, 2, 3, 4, 1, 3, 1, 4, 1, 1, 1, 6, 1, 1, 1, 1, 1, 3, 1, 4, 3, 1, 1, 3, 1, 1, 1, 2, 1, 3, 1, 2, 1, 1, 1, 14, 1, 1 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,2

LINKS

Paolo P. Lava, Table of n, a(n) for n = 1..10000

FORMULA

a(n) = gcd(n, A000217(n)-A000203(n)). - Felix Fröhlich, Jun 23 2016

a(n) = gcd(n, antisigma(n)) = gcd(n, A024816(n)). - Omar E. Pol, Jun 29 2016

EXAMPLE

a(6) = 3 because 6*7/2 - sigma(6) = 21 - 12 = 9 and gcd(6,9) = 3.

MAPLE

with(numtheory); P:=proc(q) local n;

for n from 1 to q do print(gcd(n, n*(n+1)/2-sigma(n))); od; end: P(10^3);

MATHEMATICA

Table[GCD[n, n (n+1)/2 - DivisorSigma[1, n]], {n, 100}] (* Vincenzo Librandi, Jun 25 2016 *)

PROG

(PARI) a(n) = gcd(n, n*(n+1)/2-sigma(n)) \\ Felix Fröhlich, Jun 23 2016

(MAGMA) [GCD(n, n*(n+1) div 2-SumOfDivisors(n)): n in [1..100]]; // Vincenzo Librandi, Jun 25 2016

CROSSREFS

Cf. A009194, A024816.

Sequence in context: A175432 A204118 A095025 * A318997 A069897 A257242

Adjacent sequences:  A274379 A274380 A274381 * A274383 A274384 A274385

KEYWORD

nonn,easy

AUTHOR

Paolo P. Lava, Jun 23 2016

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 19 02:45 EDT 2019. Contains 323377 sequences. (Running on oeis4.)