login
A274347
Products of two distinct Lucas numbers (3,4,7,11,18,...).
4
12, 21, 28, 33, 44, 54, 72, 77, 87, 116, 126, 141, 188, 198, 203, 228, 304, 319, 329, 369, 492, 517, 522, 532, 597, 796, 836, 846, 861, 966, 1288, 1353, 1363, 1368, 1393, 1563, 2084, 2189, 2204, 2214, 2254, 2529, 3372, 3542, 3567, 3572, 3582, 3647, 4092
OFFSET
1,1
COMMENTS
L(i)*L(j) = L(i+j) + (-1)^i*L(j-i). - Robert Israel, Sep 02 2019
LINKS
EXAMPLE
12 = 3*4, 21 = 3*7.
MAPLE
L:= gfun:-rectoproc({f(n+1)=f(n)+f(n-1), f(0)=2, f(1)=1}, f(n), remember):
Q:= proc(n) local j; op(sort([seq(L(n)+(-1)^j*L(n-2*j), j=2..(n-1)/2)])) end proc:
map(Q, [$5..20]); # Robert Israel, Sep 02 2019
MATHEMATICA
z = 100; f[n_] := LucasL[n];
Take[Sort[Flatten[Table[f[u] f[v], {u, 2, z}, {v, 2, u - 1}]]], z]
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Clark Kimberling, Jun 18 2016
STATUS
approved