login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual appeal: Please make a donation to keep the OEIS running! Over 6000 articles have referenced us, often saying "we discovered this result with the help of the OEIS".
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A274346 Denominators of coefficients in the expansion of (log(q) - log(k^2/16))/(8*k^2/16) in powers of k^2/16, where q is the Jacobi nome and k^2 the parameter of elliptic functions. 3
1, 2, 3, 4, 5, 3, 7, 8, 9, 5, 11, 3, 13, 7, 15, 16, 17, 9, 19, 5, 21, 11, 23, 3, 25, 1, 27, 7, 29, 3, 31, 32, 33, 17, 35, 9, 37, 19, 39, 5, 41, 21, 43, 11, 9, 23, 47, 6, 49, 25, 51, 13, 53, 27, 55, 7, 57, 29, 59, 15, 61, 31, 63, 64, 1, 33, 67, 17, 3, 35, 71, 9, 73, 37, 75, 19, 11, 39, 79, 10 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

The numerators are given in A274345, where also details and the first rationals are given.

The Mathematica program below gives the rationals r(n-1), n = 1..50.

LINKS

Table of n, a(n) for n=0..79.

FORMULA

a(n) = denominator(A227503(n+1)/(n+1)),  n >= 0.

(log(q) - log(k^2/16))/(8*k^2/16) = Sum_{n >= 0} (A274345(n)/a(n))*(k^2/16)^n.

MATHEMATICA

Table[SeriesCoefficient[Log[EllipticNomeQ[16 x]/x]/8, {x, 0, n}], {n, 1, 50}] // Denominator (* Vaclav Kotesovec, Jun 30 2016 *)

CROSSREFS

Cf. A227503, A274345.

Sequence in context: A294650 A053585 A098988 * A034699 A217434 A295126

Adjacent sequences:  A274343 A274344 A274345 * A274347 A274348 A274349

KEYWORD

nonn,easy,frac

AUTHOR

Wolfdieter Lang, Jun 30 2016

EXTENSIONS

More terms from Vaclav Kotesovec, Jun 30 2016

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified December 13 14:58 EST 2017. Contains 295958 sequences.