login
A274345
Numerators of coefficients in the expansion of (log(q) - log(k^2/16))/(8*k^2/16) in powers of k^2/16, where q is the Jacobi nome and k^2 the parameter of elliptic functions.
3
1, 13, 184, 2701, 40456, 306860, 9391936, 144644749, 2238445480, 17386135604, 541801226176, 2115779182678, 132472258939840, 1038616414507808, 32621327116946944, 512963507737401997, 8075477240446327528, 63629398756188443588, 2007225253307641799872, 7921211894405933627674, 500517296244244008379456
OFFSET
0,2
COMMENTS
For the denominators see A274346.
The rationals r(n) = a(n)/A274346(n) are given by A227503(n+1)/(n+1) reduced to lowest terms. See A227503 for details, references and links.
FORMULA
a(n) = numerator(A227503(n+1)/(n+1)), n >= 0.
(log(q) - log(k^2/16))/(8*k^2/16) = Sum_{n >= 0} (a(n)/A274346(n))*(k^2/16)^n.
EXAMPLE
The first rationals r(n) = a(n)/A274346(n) are: 1/1, 13/2, 184/3, 2701/4, 40456/5, 306860/3, 9391936/7, 144644749/8, 2238445480/9, 17386135604/5, 541801226176/11, 2115779182678/3, 132472258939840/13, 1038616414507808/7, 32621327116946944/15, ...
MATHEMATICA
See the program for r(n-1), n >= 1, in
CROSSREFS
Sequence in context: A285399 A297581 A268413 * A227503 A091540 A057799
KEYWORD
nonn,frac,easy
AUTHOR
Wolfdieter Lang, Jun 30 2016
STATUS
approved