login
A274333
Indices of Lucas numbers having exactly one primitive prime factor.
2
0, 2, 4, 5, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 24, 26, 27, 28, 30, 31, 33, 36, 37, 38, 41, 47, 49, 53, 54, 56, 61, 62, 66, 68, 70, 71, 72, 76, 78, 79, 80, 86, 90, 91, 96, 110, 113, 117, 120, 121, 136, 140, 144, 164, 168, 172, 178, 202, 203
OFFSET
1,2
COMMENTS
0 together with numbers n such that A086600(n) = 1, except if n = 3.
The only primes in this sequence are the primes numbers in A001606, which gives the indices of prime Lucas numbers.
LINKS
Arkadiusz Wesolowski, Table of n, a(n) for n = 1..102
PROG
(Magma) lst:=[]; pr:=1; for n in [0..203] do pd:=PrimeDivisors(Lucas(n)); d:=1; t:=0; for c in [1..#pd] do f:=pd[c]; if Gcd(pr, f) eq 1 then t+:=1; else d:=d*f; end if; end for; if t eq 1 then Append(~lst, n); end if; pr:=pr*Truncate(Lucas(n)/d); end for; lst;
CROSSREFS
KEYWORD
nonn
AUTHOR
STATUS
approved