login
Number of partitions of n^4 into at most two parts.
1

%I #19 Mar 17 2024 23:38:02

%S 1,1,9,41,129,313,649,1201,2049,3281,5001,7321,10369,14281,19209,

%T 25313,32769,41761,52489,65161,80001,97241,117129,139921,165889,

%U 195313,228489,265721,307329,353641,405001,461761,524289,592961,668169,750313,839809,937081

%N Number of partitions of n^4 into at most two parts.

%C Coefficient of x^(n^4) in 1/((1-x)*(1-x^2)).

%H Colin Barker, <a href="/A274323/b274323.txt">Table of n, a(n) for n = 0..1000</a>

%H <a href="/index/Rec#order_06">Index entries for linear recurrences with constant coefficients</a>, signature (4,-5,0,5,-4,1).

%F G.f.: (1 - 3*x + 10*x^2 + 10*x^3 + 5*x^4 + x^5) / ((1-x)^5*(1+x)).

%F a(n) = 4*a(n-1) - 5*a(n-2) + 5*a(n-4) - 4*a(n-5) + a(n-6) for n > 5.

%F a(n) = (3 + (-1)^n + 2*n^4)/4.

%F a(n) = A008619(n^4).

%F a(n) = 1 + floor(n^4/2). - _Alois P. Heinz_, Oct 13 2016

%F E.g.f.: ((2 + x + 7*x^2 + 6*x^3 + x^4)*cosh(x) + (1 + x + 7*x^2 + 6*x^3 + x^4)*sinh(x))/2. - _Stefano Spezia_, Mar 17 2024

%o (PARI) a(n) = (3+(-1)^n+2*n^4)/4

%o (PARI)

%o b(n) = (3+(-1)^n+2*n)/4 \\ the coefficient of x^n in the g.f. 1/((1-x)*(1-x^2))

%o vector(50, n, n--; b(n^4))

%Y Cf. A099392 (n^2), A274324 (n^3), A274325 (n^5).

%Y Cf. A008619.

%K nonn,easy

%O 0,3

%A _Colin Barker_, Oct 13 2016