OFFSET
4,3
LINKS
Colin Barker, Table of n, a(n) for n = 4..1000
Q. T. Bach, R. Paudyal, J. B. Remmel, A Fibonacci analogue of Stirling numbers, arXiv preprint arXiv:1510.04310 [math.CO], 2015. (Note that a(15) is given incorrectly in the first arXiv version)
Index entries for linear recurrences with constant coefficients, signature (7,-21,35,-35,21,-7,1).
FORMULA
From Colin Barker, Jun 24 2016: (Start)
a(n) = (240+452*n-220*n^2-101*n^3+75*n^4-15*n^5+n^6)/48 for n>3.
a(n) = 7*a(n-1)-21*a(n-2)+35*a(n-3)-35*a(n-4)+21*a(n-5)-7*a(n-6)+a(n-7) for n>8.
G.f.: x^6*(9+12*x-5*x^2-2*x^3+x^4) / (1-x)^7.
(End)
MAPLE
f:=n->15*binomial(n, 6)-6*binomial(n-2, 4)+binomial(n-4, 4);
[seq(f(n), n=4..50)];
MATHEMATICA
Table[15 Binomial[n, 6] - 6 Binomial[n - 2, 4] + Binomial[n - 4, 4], {n, 4, 40}] (* Vincenzo Librandi, Jun 25 2016 *)
PROG
(PARI) concat([0, 0], Vec(x^6*(9+12*x-5*x^2-2*x^3+x^4)/(1-x)^7 + O(x^40))) \\ Colin Barker, Jun 24 2016
(Magma) [15*Binomial(n, 6)-6*Binomial(n-2, 4)+Binomial(n-4, 4): n in [4..40]]; // Vincenzo Librandi, Jun 25 2016
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
N. J. A. Sloane, Jun 24 2016
STATUS
approved