This site is supported by donations to The OEIS Foundation.

 Please make a donation to keep the OEIS running. We are now in our 55th year. In the past year we added 12000 new sequences and reached 8000 citations (which often say "discovered thanks to the OEIS"). We need to raise money to hire someone to manage submissions, which would reduce the load on our editors and speed up editing. Other ways to donate

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A274295 a(n) = n+binomial(2*n-6,n-3)+binomial(2*n-5,n-3)+binomial(n-1,n-3)+Sum_{i=1..n-3} (binomial(n+i-3,n-3)+2*n-i-5). 1
 1, 1, 3, 6, 16, 43, 120, 369, 1244, 4449, 16424, 61645, 233568, 890421, 3409866, 13105083, 50517580, 195234557, 756198408, 2934687173, 11408742152, 44420399805, 173191793402, 676104404123, 2642356839108, 10337529692357, 40481034411830, 158658210122079, 622329139387184, 2442857958597649 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 COMMENTS For n >= 5 this is the number of residuated maps from the lattice N_n to itself. LINKS G. C. Greubel, Table of n, a(n) for n = 0..1000 Erika D. Foreman, Order automorphisms on the lattice of residuated maps of some special nondistributive lattices, (2015). Univ. Louisville, Electronic Theses and Dissertations. Paper 2257. FORMULA G.f.: -11-12/(x - 1)^3 + x*(-4 + 31/(x-1)^3 + x*(1/sqrt(1 - 4*x) - 23/(x - 1)^3 + x/sqrt(1 - 4*x))). - Benedict W. J. Irwin, Aug 09 2016 a(n) ~ 5*4^(n-3)/sqrt(Pi*n). - Ilya Gutkovskiy, Aug 09 2016 Conjecture: (-n+2)*a(n) +(7*n-18)*a(n-1) +14*(-n+3)*a(n-2) +2*(3*n-2)*a(n-3) +(11*n-90)*a(n-4) +(-13*n+102)*a(n-5) +2*(2*n-17)*a(n-6)=0. - R. J. Mathar, Oct 07 2016 MAPLE g:=n->n+binomial(2*n-6, n-3)+binomial(2*n-5, n-3)+binomial(n-1, n-3)+add((binomial(n+i-3, n-3)+2*n-i-5), i=1..n-3); [seq(g(n), n=0..40)]; MATHEMATICA Table[n + Binomial[2 * n - 6, n - 3] + Binomial[2 * n - 5, n - 3] + Binomial[n - 1, n - 3] + Sum[(Binomial[n + i - 3, n - 3] + 2 * n - i - 5), {i, 1, n - 3}], {n, 0, 20}] (* Benedict W. J. Irwin, Aug 09 2016 *) CoefficientList[Series[-11-12/(x - 1)^3 + x*(-4 + 31/(x-1)^3 + x*(1/Sqrt[1 - 4*x] - 23/(x - 1)^3 + x/Sqrt[1 - 4*x])), {x, 0, 50}], x] (* G. C. Greubel, Jun 05 2017 *) PROG (PARI) x='x+O('x^50); Vec(-11-12/(x - 1)^3 + x*(-4 + 31/(x-1)^3 + x*(1/sqrt(1 - 4*x) - 23/(x - 1)^3 + x/sqrt(1 - 4*x)))) \\ G. C. Greubel, Jun 05 2017 CROSSREFS Sequence in context: A091488 A202839 A007561 * A192676 A202846 A107269 Adjacent sequences:  A274292 A274293 A274294 * A274296 A274297 A274298 KEYWORD nonn AUTHOR N. J. A. Sloane, Jun 18 2016 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 8 02:09 EST 2019. Contains 329850 sequences. (Running on oeis4.)