login
This site is supported by donations to The OEIS Foundation.

 

Logo

Please make a donation to keep the OEIS running. We are now in our 55th year. In the past year we added 12000 new sequences and reached 8000 citations (which often say "discovered thanks to the OEIS"). We need to raise money to hire someone to manage submissions, which would reduce the load on our editors and speed up editing.
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A274295 a(n) = n+binomial(2*n-6,n-3)+binomial(2*n-5,n-3)+binomial(n-1,n-3)+Sum_{i=1..n-3} (binomial(n+i-3,n-3)+2*n-i-5). 1
1, 1, 3, 6, 16, 43, 120, 369, 1244, 4449, 16424, 61645, 233568, 890421, 3409866, 13105083, 50517580, 195234557, 756198408, 2934687173, 11408742152, 44420399805, 173191793402, 676104404123, 2642356839108, 10337529692357, 40481034411830, 158658210122079, 622329139387184, 2442857958597649 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,3

COMMENTS

For n >= 5 this is the number of residuated maps from the lattice N_n to itself.

LINKS

G. C. Greubel, Table of n, a(n) for n = 0..1000

Erika D. Foreman, Order automorphisms on the lattice of residuated maps of some special nondistributive lattices, (2015). Univ. Louisville, Electronic Theses and Dissertations. Paper 2257.

FORMULA

G.f.: -11-12/(x - 1)^3 + x*(-4 + 31/(x-1)^3 + x*(1/sqrt(1 - 4*x) - 23/(x - 1)^3 + x/sqrt(1 - 4*x))). - Benedict W. J. Irwin, Aug 09 2016

a(n) ~ 5*4^(n-3)/sqrt(Pi*n). - Ilya Gutkovskiy, Aug 09 2016

Conjecture: (-n+2)*a(n) +(7*n-18)*a(n-1) +14*(-n+3)*a(n-2) +2*(3*n-2)*a(n-3) +(11*n-90)*a(n-4) +(-13*n+102)*a(n-5) +2*(2*n-17)*a(n-6)=0. - R. J. Mathar, Oct 07 2016

MAPLE

g:=n->n+binomial(2*n-6, n-3)+binomial(2*n-5, n-3)+binomial(n-1, n-3)+add((binomial(n+i-3, n-3)+2*n-i-5), i=1..n-3);

[seq(g(n), n=0..40)];

MATHEMATICA

Table[n + Binomial[2 * n - 6, n - 3] + Binomial[2 * n - 5, n - 3] + Binomial[n - 1, n - 3] + Sum[(Binomial[n + i - 3, n - 3] + 2 * n - i - 5), {i, 1, n - 3}], {n, 0, 20}] (* Benedict W. J. Irwin, Aug 09 2016 *)

CoefficientList[Series[-11-12/(x - 1)^3 + x*(-4 + 31/(x-1)^3 + x*(1/Sqrt[1 - 4*x] - 23/(x - 1)^3 + x/Sqrt[1 - 4*x])), {x, 0, 50}], x] (* G. C. Greubel, Jun 05 2017 *)

PROG

(PARI) x='x+O('x^50); Vec(-11-12/(x - 1)^3 + x*(-4 + 31/(x-1)^3 + x*(1/sqrt(1 - 4*x) - 23/(x - 1)^3 + x/sqrt(1 - 4*x)))) \\ G. C. Greubel, Jun 05 2017

CROSSREFS

Sequence in context: A091488 A202839 A007561 * A192676 A202846 A107269

Adjacent sequences:  A274292 A274293 A274294 * A274296 A274297 A274298

KEYWORD

nonn

AUTHOR

N. J. A. Sloane, Jun 18 2016

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 8 02:09 EST 2019. Contains 329850 sequences. (Running on oeis4.)