|
|
A274294
|
|
a(n) = 1+(n+1)^2+n!+Sum_{k=1..n-1} binomial(n,k)*n!/(n-k)!.
|
|
1
|
|
|
3, 6, 16, 50, 234, 1582, 13376, 130986, 1441810, 17572214, 234662352, 3405357826, 53334454586, 896324308830, 16083557845504, 306827170866362, 6199668952527906, 132240988644216166, 2968971263911289360, 69974827707903049554, 1727194482044146637962
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,1
|
|
COMMENTS
|
Number of residuated maps on the lattice M_n.
|
|
LINKS
|
Table of n, a(n) for n=0..20.
Erika D. Foreman, Order automorphisms on the lattice of residuated maps of some special nondistributive lattices, (2015). Univ. Louisville, Electronic Theses and Dissertations. Paper 2257.
|
|
FORMULA
|
a(n) = (n+1)^2 +n! + A070779(n-1), n>=1. - R. J. Mathar, Jul 16 2020
|
|
MAPLE
|
f:=n->1+(n+1)^2+n!+add(binomial(n, k)*n!/(n-k)!, k=1..n-1);
[seq(f(n), n=0..20)];
|
|
CROSSREFS
|
Cf. A317094.
Sequence in context: A007002 A305136 A300355 * A201969 A340498 A288850
Adjacent sequences: A274291 A274292 A274293 * A274295 A274296 A274297
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
N. J. A. Sloane, Jun 18 2016
|
|
STATUS
|
approved
|
|
|
|