This site is supported by donations to The OEIS Foundation.

 Please make a donation to keep the OEIS running. We are now in our 55th year. In the past year we added 12000 new sequences and reached 8000 citations (which often say "discovered thanks to the OEIS"). We need to raise money to hire someone to manage submissions, which would reduce the load on our editors and speed up editing. Other ways to donate

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A274289 Number of equivalence classes of Dyck paths of semilength n for the string udu. 1

%I

%S 1,1,2,4,9,22,54,134,335,843,2132,5409,13761,35088,89638,229361,

%T 587678,1507586,3871589,9952087,25604573,65927447,169875992,438016016,

%U 1130103976,2917412699,7535482753,19473430909,50347508572,130228143004,336985674038

%N Number of equivalence classes of Dyck paths of semilength n for the string udu.

%H K. Manes, A. Sapounakis, I. Tasoulas, P. Tsikouras, <a href="http://arxiv.org/abs/1510.01952">Equivalence classes of ballot paths modulo strings of length 2 and 3</a>, arXiv:1510.01952 [math.CO], 2015.

%p G := 1 ;

%p T := 1 ;

%p for t from 1 to 40 do

%p G := x*(1+G)+x^2*(1+x*G)*(1+x*(1+x*G))*G ;

%p G := taylor(G,x=0,t+1) ;

%p G := convert(G,polynom) ;

%p T := (-x^2-x^3*T^3-x^2*T^2)/(x-1) ;

%p T := taylor(T,x=0,t+1) ;

%p T := convert(T,polynom) ;

%p F := (x*(1-x)^2*(1+G+x*G)+x^5*(1+x*G)*G^2)/(1-x)/((1-x)^2+(x-2)*x^2*G)

%p -x^4*(1-x+x^3)*(1+x*G)*G*T/(1-x)^2/(1-x+x^3-x*T) ;

%p F := taylor(F,x=0,t+1) ;

%p F := convert(F,polynom) ;

%p for i from 0 to t do

%p printf("%d,",coeff(F,x,i)) ;

%p od;

%p print();

%p end do: # _R. J. Mathar_, Jun 21 2016

%t G = 1; T = 1;

%t For[ t = 1 , t <= 40, t++,

%t G = x*(1 + G) + x^2*(1 + x*G)*(1 + x*(1 + x*G))*G + O[x]^(t+1) // Normal;

%t T = (-x^2 - x^3*T^3 - x^2*T^2)/(x - 1) + O[x]^(t+1) // Normal;

%t F = 1 + (x*(1 - x)^2*(1 + G + x*G) + x^5*(1 + x*G)*G^2)/(1 - x)/((1 - x)^2 + (x - 2)*x^2*G) - x^4*(1 - x + x^3)*(1 + x*G)*G*T/(1 - x)^2/(1 - x + x^3 - x*T) + O[x]^(t+1) // Normal;

%t ];

%t CoefficientList[F, x] (* _Jean-François Alcover_, Jul 27 2018, after _R. J. Mathar_ *)

%Y Cf. A274114, A274115.

%K nonn

%O 0,3

%A _N. J. A. Sloane_, Jun 17 2016

%E a(0)=1 prepended by _Alois P. Heinz_, Jul 27 2018

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 15 15:01 EST 2019. Contains 329999 sequences. (Running on oeis4.)