login
A274280
Numbers that are a product of distinct Lucas numbers (1,3,4,7,11,...)
11
1, 3, 4, 7, 11, 12, 18, 21, 28, 29, 33, 44, 47, 54, 72, 76, 77, 84, 87, 116, 123, 126, 132, 141, 188, 198, 199, 203, 216, 228, 231, 304, 308, 319, 322, 329, 348, 369, 378, 492, 504, 517, 521, 522, 532, 564, 594, 597, 609, 792, 796, 812, 836, 843, 846, 861
OFFSET
1,2
COMMENTS
See the Comment on distinct-product sequences in A160009.
LINKS
EXAMPLE
The Lucas numbers are 1,3,4,7,11,18,29,..., so that the sequence of all products of distinct Lucas numbers, in increasing order, are 1, 3, 4, 7, 11, 12, 18, 21, 28, 29,...
MATHEMATICA
f[1] = 1; f[2] = 3; z = 32; f[n_] := f[n - 1] + f[n - 2]; f = Table[f[n], {n, 1, z}]; f
s = {1}; Do[s = Union[s, Select[s*f[[i]], # <= f[[z]] &]], {i, z}]; s
Take[Times@@@Subsets[LucasL[Range[20]]]//Union, 60] (* Harvey P. Dale, Sep 26 2019 *)
CROSSREFS
Cf. A000204, A160009, A274281 (includes 2).
Sequence in context: A047543 A030489 A132841 * A316265 A205477 A023665
KEYWORD
nonn,easy
AUTHOR
Clark Kimberling, Jun 17 2016
STATUS
approved