OFFSET
1,2
COMMENTS
Compare with A052782.
FORMULA
E.g.f. A(x) = 1 - exp(-1/5*T(5*x)) = x + 9*x^2/2! + 14^2*x^3/3! + 19^3*x^4/4! + 24^4*x^5/5! + ..., where T(x) = Sum_{n >= 1} n^(n-1)*x^n/n! is Euler's tree function - see A000169.
A(x) = series reversion( (1 - x)^5*log(1/(1 - x)) ). See A274270.
1 - A(x) = exp(-x/(1 - A(x))^5) = exp(-x/(exp(-5*x/(exp(-5*x/ ...))))).
1 - A(-x*exp(5*x)) = exp(x) = 1/(1 - A(x*exp(-5*x))).
1/(1 - A(x)) = Sum_{n >= 0} (5*n + 1)^(n-1)*x^n/n!, the e.g.f. for A052782.
MATHEMATICA
Table[(5*n-1)^(n-1), {n, 1, 25}] (* G. C. Greubel, Jun 19 2016 *)
PROG
(Magma) [(5*n-1)^(n-1): n in [1..25]]; // Vincenzo Librandi, Jun 20 2016
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Peter Bala, Jun 19 2016
STATUS
approved