OFFSET
0,2
COMMENTS
a(n) is the number of lattice paths (allowing only north and east steps) starting at (0,0) and ending at (3n,4n) that stay below the line y=4/3x and also do not contain a proper subpath of smaller size.
LINKS
Daniel Birmajer, Juan B. Gil and Michael D. Weiner, On rational Dyck paths and the enumeration of factor-free Dyck words, arXiv:1606.02183 [math.CO], 2016.
Daniel Birmajer, Juan B. Gil and Michael D. Weiner, On rational Dyck paths and the enumeration of factor-free Dyck words, Discrete Applied Mathematics, 244 (2018), 36-43.
P. Duchon, On the enumeration and generation of generalized Dyck words, Discrete Mathematics, 225 (2000), 121-135.
FORMULA
G.f. satisfies: 0 = x*f^6 + x*(x-1)*f^5 - x^2*(x+1)*f^4 - x*(x-3)*(x+1)^2*f^3 + x*(x+1)^3*f^2 - (x+1)^4*f + (x+1)^5. - Michael D. Weiner, Jan 14 2019
Conjectural o.g.f.: Let E(x) = exp( Sum_{n >= 1} binomial(7*n, 3*n)*x^n/n ). Then A(x) = ( x/series reversion of x*E(x) )^(1/7) = 1 + 5*x + 52*x^2 + 880*x^3 + .... Equivalently, [x^n]( A(x)^(7*n) ) = binomial(7*n, 3*n) for n = 0,1,2,.... - Peter Bala, Jan 01 2020
EXAMPLE
a(2) = 52 since there are 52 lattice paths (allowing only north and east steps) starting at (0,0) and ending at (6,8) that stay below the line y=4/3x and also do not contain a proper subpath of small size; e.g., EENEENENNENNNN is a factor-free Dyck word but ENEEENNENNENNN contains the factor EENNENN.
MATHEMATICA
m = 20; f[_] = 0;
Do[f[x_] = (1/(x+1)^4)(-(x^2 (x+1) f[x]^4) + x f[x]^6 + (x-1) x f[x]^5 - (x - 3) x (x+1)^2 f[x]^3 + x (x+1)^3 f[x]^2 + (x+1)^5) + O[x]^m, {m}];
CoefficientList[f[x], x] (* Jean-François Alcover, Sep 28 2019 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Michael D. Weiner, Jun 16 2016
STATUS
approved