The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A274196 Triangular array read by rows: g(n,k) = 1 for n >= 0; g(n,k) = 0 if k > n; g(n,k) = g(n-1,k-1) + g(n-1,4k) for n > 0, k > 1. 6

%I

%S 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,1,1,1,1,1,2,2,1,1,1,1,1,2,2,2,1,1,

%T 1,1,1,2,2,2,2,1,1,1,1,1,3,3,2,2,2,1,1,1,1,1,3,4,3,2,2,2,1,1,1,1,1,3,

%U 4,4,3,2,2,2,1,1,1,1,1,4,4,4,4,3,2,2

%N Triangular array read by rows: g(n,k) = 1 for n >= 0; g(n,k) = 0 if k > n; g(n,k) = g(n-1,k-1) + g(n-1,4k) for n > 0, k > 1.

%H Clark Kimberling, <a href="/A274196/b274196.txt">Table of n, a(n) for n = 0..10000</a>

%e First 10 rows:

%e 1

%e 1 1

%e 1 1 1

%e 1 1 1 1

%e 1 1 1 1 1

%e 1 2 1 1 1 1

%e 1 2 2 1 1 1 1

%e 1 2 2 2 1 1 1 1

%e 1 2 2 2 2 1 1 1 1

%e 1 3 3 2 2 2 1 1 1 1

%t g[n_, 0] = g[n, 0] = 1;

%t g[n_, k_] := g[n, k] = If[k > n, 0, g[n - 1, k - 1] + g[n - 1, 4 k]];

%t t = Table[g[n, k], {n, 0, 14}, {k, 0, n}]

%t TableForm[t] (* A274196 array *)

%t u = Flatten[t] (* A274196 sequence *)

%Y Cf. A274197 (row sums), A274201 (limiting reverse row), A274190.

%K nonn,tabl,easy

%O 0,17

%A _Clark Kimberling_, Jun 16 2016

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified September 26 19:46 EDT 2020. Contains 337374 sequences. (Running on oeis4.)