login
a(n) = 2^A000265(n) = 2^numerator(n/2^n), a sequence related to Oresme numbers.
1

%I #14 Jun 14 2016 08:52:40

%S 2,2,8,2,32,8,128,2,512,32,2048,8,8192,128,32768,2,131072,512,524288,

%T 32,2097152,2048,8388608,8,33554432,8192,134217728,128,536870912,

%U 32768,2147483648,2,8589934592,131072,34359738368,512,137438953472,524288,549755813888,32

%N a(n) = 2^A000265(n) = 2^numerator(n/2^n), a sequence related to Oresme numbers.

%C Differences: 0, 6, -6, 30, -24, 120, -126, 510, -480, 2016, -2040, 8184, -8064, 32640, -32766, 131070, -130560, ...

%C GCD of differences is 6.

%H A. F. Horadam, <a href="http://www.fq.math.ca/Scanned/12-3/horadam.pdf">Oresme numbers</a>, Fib. Quart., 12 (1974), 267-271.

%F a(n) = 2^denominator(2^n/n).

%F a(n) = 2^(n/2^valuation(n,2)) = 2^A007814(n).

%F a(n) = 2*A082392(n)^2 (conjecture).

%t a[n_] := 2^(n/2^IntegerExponent[n, 2]);

%t Array[a, 40]

%o (PARI) a(n) = 2^(n/2^valuation(n,2)); \\ _Michel Marcus_, Jun 12 2016

%Y Cf. A000265, A006519, A007814, A082392.

%K nonn

%O 1,1

%A _Jean-François Alcover_ and _Paul Curtz_, Jun 11 2016