login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A274138 Triangle read by rows: Domination number for rectangular queens' graph Q(n,m), 1 <= n <= m. 3
1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 1, 2, 2, 2, 3, 1, 2, 2, 3, 3, 3, 1, 2, 3, 3, 3, 4, 4, 1, 2, 3, 3, 4, 4, 5, 5, 1, 2, 3, 4, 4, 4, 5, 5, 5, 1, 2, 3, 4, 4, 4, 5, 5, 5, 5, 1, 2, 3, 4, 4, 5, 5, 6, 5, 5, 5, 1, 2, 3, 4, 4, 5, 5, 6, 6, 6, 6, 6, 1, 2, 3, 4, 5, 5, 6, 6, 6, 7, 7, 7, 7, 1, 2, 3, 4, 5, 6, 6, 6, 6, 7, 7, 8, 8, 8 (list; table; graph; refs; listen; history; text; internal format)
OFFSET

1,8

COMMENTS

The queens graph Q(n X m) has the squares of the n X m chessboard as its vertices; two squares are adjacent if they are both in the same row, column, or diagonal of the board. A set D of squares of Q(n X m) is a dominating set for Q(n X m) if every square of Q(n X m) is either in D or adjacent to a square in D. The minimum size of a dominating set of Q(n X m) is the domination number, denoted by gamma(Q(n X m)).

Less formally, gamma(Q(n X m)) is the number of queens that are necessary and sufficient to all squares of the n X m chessboard be occupied or attacked.

Chessboard 8 X 11 is of special interest, because it cannot be dominated by 5 queens, although the larger boards 9 X 11, 10 X 11 and 11 X 11 are. It is conjectured that 8 X 11 is the only counterexample of this kind of monotonicity.

LINKS

Sandor Bozoki, Table of n, a(n) for n = 1..170

S. Bozóki, P. Gál, I. Marosi, W. D. Weakley, Domination of the rectangular queen’s graph, arXiv:1606.02060 [math.CO], 2016.

S. Bozóki, P. Gál, I. Marosi, W. D. Weakley, Domination of the rectangular queen’s graph, 2016.

EXAMPLE

Table begins

m\n|1  2  3  4  5  6  7  8  9 10 11 12 13 14 15 16 17 18

--------------------------------------------------------

1  |1

2  |1  1

3  |1  1  1

4  |1  2  2  2

5  |1  2  2  2  3

6  |1  2  2  3  3  3

7  |1  2  3  3  3  4  4

8  |1  2  3  3  4  4  5  5

9  |1  2  3  4  4  4  5  5  5

10 |1  2  3  4  4  4  5  5  5  5

11 |1  2  3  4  4  5  5  6  5  5  5

12 |1  2  3  4  4  5  5  6  6  6  6  6

13 |1  2  3  4  5  5  6  6  6  7  7  7  7

14 |1  2  3  4  5  6  6  6  6  7  7  8  8  8

15 |1  2  3  4  5  6  6  6  7  7  7  8  8  8  9

16 |1  2  3  4  5  6  6  7  7  7  8  8  8  9  9  9

17 |1  2  3  4  5  6  7  7  7  8  8  8  9  9  9  9  9

18 |1  2  3  4  5  6  7  7  8  8  8  8  9  9  9  9  9  9

CROSSREFS

Diagonal elements are in A075458: Domination number for queens' graph Q(n).

Sequence in context: A280534 A129451 A097195 * A179301 A008334 A116858

Adjacent sequences:  A274135 A274136 A274137 * A274139 A274140 A274141

KEYWORD

nonn,tabl

AUTHOR

Sandor Bozoki, Jun 11 2016

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 29 07:40 EDT 2020. Contains 334697 sequences. (Running on oeis4.)