%I #29 Jun 20 2016 19:35:53
%S 0,1,4,9,15,20,23,23,20,11,-2,-21,-46,-76,-111,-150,-194,-240,-289,
%T -339,-389,-437,-484,-527,-566,-599,-626,-645,-656,-658,-649,-630,
%U -600,-559,-505,-440,-362,-273,-171,-58,66,201,346,501,664,835,1013,1197,1385,1577,1772,1968,2164,2359,2551,2740
%N a(n) = nearest integer to n^2 * sin(sqrt(n)).
%H N. J. A. Sloane and Chai Wah Wu, <a href="/A274088/b274088.txt">Table of n, a(n) for n = 0..10000</a> [Terms n = 0..1000 from N. J. A. Sloane].
%p Digits:=50: f:=n->round(evalf(n^2*sin(sqrt(n)))); [seq(f(n),n=0..120)];
%t Table[Round[n^2 * Sin[Sqrt[n]]], {n,0,50}] (* _G. C. Greubel_, Jun 10 2016 *)
%o (Python)
%o from sympy import sin, sqrt
%o def A274088(n):
%o return int((n**2*sin(sqrt(n))).round()) # _Chai Wah Wu_, Jun 10 2016
%Y Sequences of the same type: A272695, A274086, A274087, A274088, A274090, A274091, A274092, A274095, A274096, A274097, A274101, A274102.
%K sign,look
%O 0,3
%A _N. J. A. Sloane_, Jun 10 2016