login
A273991
Decimal expansion of the odd Bessel moment t(5,5) (see the referenced paper about the elliptic integral evaluations of Bessel moments).
2
1, 0, 4, 3, 2, 9, 7, 3, 6, 7, 3, 8, 6, 8, 7, 1, 3, 4, 4, 9, 1, 8, 9, 3, 1, 6, 0, 7, 8, 9, 4, 7, 7, 1, 2, 2, 1, 7, 5, 6, 6, 1, 6, 3, 3, 1, 2, 2, 6, 9, 1, 5, 5, 7, 8, 8, 6, 8, 8, 3, 2, 5, 5, 8, 9, 8, 6, 6, 2, 7, 1, 0, 9, 6, 4, 3, 9, 2, 2, 0, 2, 2, 6, 7, 7, 4, 2, 1, 1, 5, 0, 6, 3, 5, 6, 8, 4, 2, 6, 1, 0, 8, 9
OFFSET
1,3
LINKS
David H. Bailey, Jonathan M. Borwein, David Broadhurst and M. L. Glasser, Elliptic integral evaluations of Bessel moments, arXiv:0801.0891 [hep-th], 2008, page 21.
FORMULA
Integral_{0..inf} x^5*BesselI_0(x)^2*BesselK_0(x)^3.
Conjecture: Equals 76/15 t(5,3) - 16/45 t(5,1).
EXAMPLE
1.0432973673868713449189316078947712217566163312269155788688325589866...
MATHEMATICA
t[5, 5] = NIntegrate[x^5*BesselI[0, x]^2*BesselK[0, x]^3, {x, 0, Infinity}, WorkingPrecision -> 103];
RealDigits[t[5, 5]][[1]]
CROSSREFS
Cf. A073010 (s(3,1)), A121839 (1+s(3,3)), A222068 (s(4,1)), A244854 (2s(4,3)), A273959, A273984 (s(5,1)), A273985 (s(5,3)), A273986 (s(5,5)), A273989 (t(5,1)), A273990 (t(5,3)).
Sequence in context: A132668 A018866 A021235 * A292828 A020703 A084483
KEYWORD
nonn,cons
AUTHOR
STATUS
approved