login
A273985
Decimal expansion of the odd Bessel moment s(5,3) (see the referenced paper about the elliptic integral evaluations of Bessel moments).
5
0, 8, 5, 9, 3, 7, 2, 9, 0, 6, 9, 1, 7, 6, 8, 4, 5, 2, 4, 2, 3, 8, 4, 1, 7, 4, 5, 7, 8, 7, 6, 4, 6, 9, 5, 8, 0, 3, 3, 7, 8, 7, 3, 7, 7, 9, 1, 3, 0, 6, 4, 9, 8, 0, 6, 4, 3, 1, 6, 8, 4, 6, 6, 9, 6, 3, 7, 5, 7, 9, 0, 7, 5, 2, 2, 9, 7, 2, 3, 0, 2, 5, 5, 5, 6, 5, 1, 6, 0, 0, 9, 8, 3, 3, 8, 1, 9, 3, 1, 2, 4, 6, 7, 7
OFFSET
0,2
LINKS
David H. Bailey, Jonathan M. Borwein, David Broadhurst and M. L. Glasser, Elliptic integral evaluations of Bessel moments, arXiv:0801.0891, page 21.
FORMULA
s(5,3) = Integral_{0..inf} x^3*BesselI_0(x)*BesselK_0(x)^4 dx.
Equals Pi^2 (2/15)^2 (13 C - 1/(10 C)) (conjectural, where C is A273959).
EXAMPLE
0.0859372906917684524238417457876469580337873779130649806431684669637579...
MATHEMATICA
s[5, 3] = NIntegrate[x^3*BesselI[0, x]*BesselK[0, x]^4, {x, 0, Infinity}, WorkingPrecision -> 103];
Join[{0}, RealDigits[s[5, 3]][[1]]]
CROSSREFS
Cf. A073010 (s(3,1)), A121839 (1+s(3,3)), A222068 (s(4,1)), A244854 (2s(4,3)), A273959, A273984 (s(5,1)), A273986 (s(5,5)).
Sequence in context: A335822 A233033 A244810 * A347195 A132036 A132717
KEYWORD
nonn,cons
AUTHOR
STATUS
approved