

A273915


Number of ordered ways to write n as w^5 + x^2 + y^2 + z^2, where w,x,y,z are nonnegative integers with x <= y <= z.


4



1, 2, 2, 2, 2, 2, 2, 1, 1, 3, 3, 2, 2, 2, 2, 1, 1, 3, 4, 3, 2, 2, 2, 1, 1, 3, 4, 4, 2, 2, 3, 1, 2, 4, 5, 4, 4, 4, 4, 2, 2, 6, 5, 3, 3, 4, 4, 1, 2, 5, 7, 6, 4, 4, 6, 3, 2, 5, 5, 5, 2, 4, 5, 2, 2, 6, 8, 5, 5, 5, 5, 1, 3, 7, 6, 6, 4, 5, 4, 1, 2
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

0,2


COMMENTS

Let c be 1 or 4. Then any nonnegative integer n can be written as c*w^5 + x^2 + y^2 + z^2 with w,x,y,z nonnegative integers. We now prove this by induction on n. For n < 2^(10) this can be verified directly via a computer. If 2^(10) divides n, then by the induction hypothesis we can write n/2^(10) as c*w^5 + x^2 + y^2 + z^2 with w,x,y,z, nonnegative integers, and hence n = c*(2^2*w)^5 + (2^5*x)^2 + (2^5*y)^2 + (2^5*z)^2. If n is not of the form 4^k*(8m+7) with k and m nonnegative integers, then n is the sum of three squares and hence n = c*0^5 + x^2 + y^2 + z^2 for some integers x,y,z. When n = 4^k*(8m+7) > 2^(10) with k < 5, it is easy to see that n  c*1^5 or n  c*2^5 is the sum of three squares.
For any positive integer k and for each c = 2, 6, any natural number n can be written as c*w^k + x^2 + y^2 + z^2 with w,x,y,z nonnegative integers. In fact, for every n = 0,1,2,... either n  c*0^k or n  c*1^k can be written as the sum of three squares.
See also A270969 and A273429 for similar results.
For some conjectural refinements of Lagrange's foursquare theorem, one may consult the author's preprint arXiv:1604.06723


LINKS

ZhiWei Sun, Table of n, a(n) for n = 0..10000
ZhiWei Sun, Refining Lagrange's foursquare theorem, arXiv:1604.06723 [math.NT], 20162017.
ZhiWei Sun, Refining Lagrange's foursquare theorem, J. Number Theory 175(2017), 167190.


EXAMPLE

a(0) = 1 since 0 = 0^5 + 0^2 + 0^2 + 0^2.
a(7) = 1 since 7 = 1^5 + 1^2 + 1^2 + 2^2.
a(8) = 1 since 8 = 0^5 + 0^2 + 2^2 + 2^2.
a(15) = 1 since 15 = 1^5 + 1^2 + 2^2 + 3^2.
a(16) = 1 since 16 = 0^5 + 0^2 + 0^2 + 4^2.
a(23) = 1 since 23 = 1^5 + 2^2 + 3^2 + 3^2.
a(24) = 1 since 24 = 0^2 + 2^2 + 2^2 + 4^2.
a(31) = 1 since 31 = 1^5 + 1^2 + 2^2 + 5^2.
a(47) = 1 since 47 = 1^5 + 1^2 + 3^2 + 6^2.
a(71) = 1 since 71 = 1^5 + 3^2 + 5^2 + 6^2.
a(79) = 1 since 79 = 1^5 + 2^2 + 5^2 + 7^2.
a(92) = 1 since 92 = 1^5 + 1^2 + 3^2 + 9^2.
a(112) = 1 since 112 = 2^5 + 0^2 + 4^2 + 8^2.
a(143) = 1 since 143 = 1^5 + 5^2 + 6^2 + 9^2.
a(191) = 1 since 191 = 1^5 + 3^2 + 9^2 + 10^2.
a(240) = 1 since 240 = 2^5 + 0^2 + 8^2 + 12^2.


MATHEMATICA

SQ[n_]:=SQ[n]=IntegerQ[Sqrt[n]]
Do[r=0; Do[If[SQ[nw^5x^2y^2], r=r+1], {w, 0, n^(1/5)}, {x, 0, Sqrt[(nw^5)/3]}, {y, x, Sqrt[(nw^5x^2)/2]}]; Print[n, " ", r]; Label[aa]; Continue, {n, 0, 80}]


CROSSREFS

Cf. A000118, A000290, A000584, A270969, A273429, A273917.
Sequence in context: A179529 A118668 A273429 * A270969 A241927 A297033
Adjacent sequences: A273912 A273913 A273914 * A273916 A273917 A273918


KEYWORD

nonn


AUTHOR

ZhiWei Sun, Jun 03 2016


STATUS

approved



