login
A273869
Integers n such that floor(sqrt(n!)) (A055226(n)) is a prime number.
0
3, 11, 14, 53, 110, 216, 322, 364, 389
OFFSET
1,1
COMMENTS
a(10) (if it exists) requires n > 4800.
No further terms <= 15000. - Eric M. Schmidt, Jun 05 2017
EXAMPLE
3 is in the sequence because floor(sqrt(3!)) = 2 is prime.
11 is in the sequence because floor(sqrt(11!)) = 6317 is prime.
14 is in the sequence because floor(sqrt(14!)) = 295259 is prime.
4 is not in the sequence because floor(sqrt(4!)) = 2^2.
MATHEMATICA
Select[Table[n, {n, 1, 2500}], PrimeQ[Floor[Sqrt[#!]]] &]
PROG
(PARI) isok(n) = isprime(sqrtint(n!)); \\ Michel Marcus, Jun 10 2016
(PARI) lista(nn) = for(n=1, nn, if(ispseudoprime(sqrtint(n!)), print1(n, ", "))); \\ Altug Alkan, Jul 09 2016
CROSSREFS
Cf. A055226.
Sequence in context: A186701 A022123 A303035 * A289049 A288980 A235913
KEYWORD
nonn,more
AUTHOR
Salvador Cerdá, Jun 01 2016
STATUS
approved