OFFSET
1,2
COMMENTS
Values of (x^3 + y^3)/2 such that (x^3 + y^3)/2 = (a^2 + b^2 + c^2)/3 where x, y, a, b, c > 0, is soluble.
EXAMPLE
14 is a term because 14 = (1^3 + 3^3)/2 = (1^2 + 4^2 + 5^2)/3.
MATHEMATICA
repQ[n_, k_, e_] := {} != Quiet@ IntegerPartitions[n, {k}, Range[n^ (1/e) ]^e, 1]; Select[Range@ 2156, repQ[2*#, 2, 3] && repQ[3*#, 3, 2] &] (* Giovanni Resta, Jun 03 2016 *)
PROG
(PARI) isA000408(n) = my(a, b) ; a=1 ; while(a^2+1<n, b=1 ; while(b<=a && a^2+b^2<n, if(issquare(n-a^2-b^2), return(1) ) ; b++ ; ) ; a++ ; ) ; return(0);
isA003325(n) = for(k=1, sqrtnint(n\2, 3), ispower(n-k^3, 3) && return(1));
lista(nn) = for(n=1, nn, if(isA003325(2*n) && isA000408(3*n), print1(n, ", ")));
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Altug Alkan, Jun 01 2016
STATUS
approved