login
A273842
Decimal expansion of the double integral int_{0..inf} int_{0..inf} 1/sqrt((1+x^2)(1+y^2)(1+(x+y)^2)) dx dy.
0
2, 9, 4, 9, 1, 7, 1, 9, 8, 4, 7, 4, 2, 3, 8, 4, 9, 6, 0, 7, 0, 5, 7, 0, 4, 7, 9, 1, 2, 0, 9, 1, 7, 4, 7, 9, 1, 8, 4, 3, 6, 7, 6, 5, 7, 3, 1, 0, 6, 1, 1, 6, 7, 4, 0, 8, 9, 1, 4, 7, 5, 5, 4, 0, 4, 5, 1, 9, 8, 4, 4, 2, 4, 8, 7, 4, 5, 5, 2, 8, 6, 2, 5, 1, 3, 1, 2, 1, 1, 0, 1, 1, 1, 9, 7, 2, 8, 4, 1, 5, 9, 5, 4
OFFSET
1,1
LINKS
David H. Bailey, Jonathan M. Borwein, David Broadhurst and M. L. Glasser, Elliptic integral evaluations of Bessel moments, arXiv:0801.0891 [hep-th], 2008.
FORMULA
Gamma(1/3)^6/(8*2^(2/3)*Pi^2).
EXAMPLE
2.94917198474238496070570479120917479184367657310611674089147554...
MATHEMATICA
RealDigits[ Gamma[1/3]^6/(8*2^(2/3)*Pi^2) , 10, 103][[1]]
PROG
(PARI) gamma(1/3)^6/(8*2^(2/3)*Pi^2) \\ Michel Marcus, Jun 01 2016
CROSSREFS
Cf. A073005.
Sequence in context: A202324 A199267 A115290 * A371852 A021343 A200703
KEYWORD
cons,nonn
AUTHOR
STATUS
approved