login
This site is supported by donations to The OEIS Foundation.

 

Logo

Please make a donation to keep the OEIS running. We are now in our 55th year. In the past year we added 12000 new sequences and reached 8000 citations (which often say "discovered thanks to the OEIS"). We need to raise money to hire someone to manage submissions, which would reduce the load on our editors and speed up editing.
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A273841 Decimal expansion the Bessel moment c(4,3) = Integral_{0..inf} x^3 K_0(x)^4 dx, where K_0 is the modified Bessel function of the second kind. 2
0, 7, 5, 4, 4, 9, 9, 4, 7, 5, 6, 6, 1, 6, 1, 2, 4, 9, 9, 3, 1, 1, 9, 2, 7, 2, 2, 8, 3, 0, 6, 2, 9, 6, 8, 5, 4, 7, 9, 8, 4, 0, 7, 5, 1, 4, 4, 9, 4, 8, 4, 1, 3, 0, 3, 9, 2, 0, 5, 9, 4, 0, 2, 7, 3, 1, 0, 2, 7, 1, 0, 7, 5, 1, 5, 7, 5, 5, 9, 8, 8, 4, 7, 8, 2, 8, 7, 2, 2, 2, 3, 5, 2, 0, 4, 2, 0, 8, 7, 7, 1, 9, 4, 8 (list; constant; graph; refs; listen; history; text; internal format)
OFFSET

0,2

LINKS

Table of n, a(n) for n=0..103.

David H. Bailey, Jonathan M. Borwein, David Broadhurst and M. L. Glasser, Elliptic integral evaluations of Bessel moments, arXiv:0801.0891.

FORMULA

c(4,3) = (7/32)*zeta(3) - 3/16.

EXAMPLE

0.075449947566161249931192722830629685479840751449484130392059402731...

MATHEMATICA

c[4, 3] = (7/32)*Zeta[3] - 3/16;

RealDigits[c[4, 3], 10, 103][[1]]

CROSSREFS

Cf. A273816 (c(3,0)), A273817 (c(3,1)), A273818 (c(3,2)), A273819 (c(3,3)), A273839 (c(4,0)), A233091 (c(4,1)), A273840 (c(4,2)).

Sequence in context: A021061 A066960 A061827 * A112407 A154195 A280870

Adjacent sequences:  A273838 A273839 A273840 * A273842 A273843 A273844

KEYWORD

nonn,cons

AUTHOR

Jean-Fran├žois Alcover, Jun 01 2016

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 11 18:34 EST 2019. Contains 329925 sequences. (Running on oeis4.)