

A273841


Decimal expansion the Bessel moment c(4,3) = Integral_{0..inf} x^3 K_0(x)^4 dx, where K_0 is the modified Bessel function of the second kind.


2



0, 7, 5, 4, 4, 9, 9, 4, 7, 5, 6, 6, 1, 6, 1, 2, 4, 9, 9, 3, 1, 1, 9, 2, 7, 2, 2, 8, 3, 0, 6, 2, 9, 6, 8, 5, 4, 7, 9, 8, 4, 0, 7, 5, 1, 4, 4, 9, 4, 8, 4, 1, 3, 0, 3, 9, 2, 0, 5, 9, 4, 0, 2, 7, 3, 1, 0, 2, 7, 1, 0, 7, 5, 1, 5, 7, 5, 5, 9, 8, 8, 4, 7, 8, 2, 8, 7, 2, 2, 2, 3, 5, 2, 0, 4, 2, 0, 8, 7, 7, 1, 9, 4, 8
(list;
constant;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

0,2


LINKS

Table of n, a(n) for n=0..103.
David H. Bailey, Jonathan M. Borwein, David Broadhurst and M. L. Glasser, Elliptic integral evaluations of Bessel moments, arXiv:0801.0891.


FORMULA

c(4,3) = (7/32)*zeta(3)  3/16.


EXAMPLE

0.075449947566161249931192722830629685479840751449484130392059402731...


MATHEMATICA

c[4, 3] = (7/32)*Zeta[3]  3/16;
RealDigits[c[4, 3], 10, 103][[1]]


CROSSREFS

Cf. A273816 (c(3,0)), A273817 (c(3,1)), A273818 (c(3,2)), A273819 (c(3,3)), A273839 (c(4,0)), A233091 (c(4,1)), A273840 (c(4,2)).
Sequence in context: A021061 A066960 A061827 * A112407 A154195 A280870
Adjacent sequences: A273838 A273839 A273840 * A273842 A273843 A273844


KEYWORD

nonn,cons


AUTHOR

JeanFrançois Alcover, Jun 01 2016


STATUS

approved



