

A273819


Decimal expansion the Bessel moment c(3,3) = Integral_{0..inf} x^3 K_0(x)^3 dx, where K_0 is the modified Bessel function of the second kind.


6



1, 1, 4, 6, 3, 5, 7, 4, 6, 2, 2, 9, 8, 1, 9, 6, 3, 0, 2, 0, 0, 5, 2, 0, 7, 6, 2, 9, 5, 7, 4, 2, 5, 6, 8, 9, 6, 9, 8, 4, 6, 7, 6, 6, 9, 8, 7, 8, 6, 1, 8, 7, 5, 3, 5, 5, 5, 4, 3, 3, 3, 9, 6, 3, 0, 0, 2, 2, 0, 3, 1, 7, 9, 8, 4, 9, 5, 1, 5, 5, 1, 4, 2, 6, 2, 0, 2, 9, 0, 4, 1, 6, 5, 5, 4, 3, 1, 9, 4, 3, 5, 4
(list;
constant;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

0,3


LINKS

Table of n, a(n) for n=0..101.
David H. Bailey, Jonathan M. Borwein, David Broadhurst and M. L. Glasser, Elliptic integral evaluations of Bessel moments, arXiv:0801.0891 [hepth], 2008.


FORMULA

c(3, 3) = (1/9)*(PolyGamma(1, 1/3)  PolyGamma(1, 2/3))  2/3.


EXAMPLE

0.1146357462298196302005207629574256896984676698786187535554333963...


MATHEMATICA

c[3, 3] = (1/9)*(PolyGamma[1, 1/3]  PolyGamma[1, 2/3])  2/3;
RealDigits[c[3, 3], 10, 102][[1]]


CROSSREFS

Cf. A273816 (c(3,0)), A273817 (c(3,1)), A273818 (c(3,2)).
Sequence in context: A081709 A200640 A179453 * A276761 A073000 A198113
Adjacent sequences: A273816 A273817 A273818 * A273820 A273821 A273822


KEYWORD

nonn,cons


AUTHOR

JeanFrançois Alcover, May 31 2016


STATUS

approved



