login
This site is supported by donations to The OEIS Foundation.

 

Logo

Thanks to everyone who made a donation during our annual appeal!
To see the list of donors, or make a donation, see the OEIS Foundation home page.

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A273698 Denominators of expansion of PolyLog(-2, x)/PolyLog(2, x), where PolyLog(m, x) is the polylogarithm function. 1
1, 4, 144, 576, 518400, 2073600, 3657830400, 696729600, 13168189440000, 52672757760000, 45888506560512000, 917770131210240000, 6840049010896797696000000, 1013340594206932992000000, 984967057569138868224000000, 562838318610936496128000000 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

Denominators of expansion of (Sum_{k>=1} x^k*k^2)/(Sum_{k>=1} x^k/k^2).

Denominators of numbers for which convolution with Sum_{k=1..n} 1/k^2 = A007406(n)/A007407(n) gives Sum_{k=1..n} k^2 = A000330(n).

LINKS

Table of n, a(n) for n=0..15.

Eric Weisstein's World of Mathematics, Dilogarithm, Polylogarithm, and Wolstenholme Number

EXAMPLE

1, 15/4, 1145/144, 7795/576, 10605889/518400, 59526571/2073600, 139954552433/3657830400, 34217723087/696729600, 806539298609929/13168189440000, ...

MATHEMATICA

Table[Denominator[SeriesCoefficient[PolyLog[-2, x]/PolyLog[2, x], {x, 0, n}]], {n, 0, 15}]

CROSSREFS

Cf. A232193 (numerators of expansion of PolyLog(-1, x)/PolyLog(1, x)), A232248 (denominators of expansion of PolyLog(-1, x)/PolyLog(1, x)).

Cf. A000330, A007406, A007407, A266581 (numerators).

Sequence in context: A053891 A053897 A017294 * A134631 A036511 A263386

Adjacent sequences:  A273695 A273696 A273697 * A273699 A273700 A273701

KEYWORD

nonn,frac

AUTHOR

Ilya Gutkovskiy, May 28 2016

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified January 18 20:57 EST 2019. Contains 319282 sequences. (Running on oeis4.)